Albert1
- 1,221
- 0
$A=\sum_{k=1}^{91}(k!\times k)$
find $ A $ MOD 2002
find $ A $ MOD 2002
very nice !Euge said:Since $k!k = k! ((k+1)-1) = (k+1)! - k$ for all $k$, $A$ telescopes to 92! - 1. Since $2002 = 2 \cdot 7 \cdot 11 \cdot 13$, $92!$ is divisible by 2002 and hence $A = 2001 \pmod{2002}$.
Albert said:very nice !
a typo :$k!k=k!(k+1-1)=(k+1)!-k!$