- #1
dexterdev
- 194
- 1
Homework Statement
Suppose there are three statistically i.i.d continuous random variables X1, X2, X3 each are uniformly distributed in the range [0,1]. How to find the probability P(X1+X2<X3)?
Homework Equations
The below given equations are the steps to the solution. But I can't figure out how the limits of integral comes this way.
[itex] \int_0^1 \int_0^{x_3}\int_0^{x_3-x_2} \,dx_1\,dx_2\,dx_3 =\int_0^1 \int_0^{x_3} (x_3-x_2) dx_2\,dx_3 = \int_0^1 x_3^2 - \frac{x_3^2}{2}\,dx_3 = \frac16 = 0.1\overline 6[/itex]
The Attempt at a Solution
I tried this using a software called MATLAB by generating three pseudo random variables (1000 samples) and finding X1+X2−X3 and plotting its CDF through a MATLAB tool called dfittool. I got the answer around 0.169. But how do I do this theoretically? Especially how to figure out the limits in those integrals?