How to Get Covariance of Bivariate Poisson Distribution

AI Thread Summary
The discussion focuses on calculating the covariance of a Bivariate Poisson Distribution, specifically for random variables X and Y defined as X = X1 + X3 and Y = X2 + X3. The joint probability function is established, leading to the conclusion that X follows a Poisson distribution with parameter (θ1 + θ3) and Y with (θ2 + θ3). It is determined that the covariance Cov(X,Y) equals θ3, derived from the independence of the variables involved. The mathematical derivation confirms that Cov(X,Y) simplifies to the variance of X3, which is θ3. The participants express appreciation for clarifying the notation and derivation process.
ahdika
Messages
6
Reaction score
0
Dear all, I have a problem in solving covariance of Bivariate Poisson Distribution

Let X_i \sim POI (\theta_i) , i = 1,2,3
Consider
X = X_1 + X_3
Y = X_2 + X_3

Then the joint probability function given :
P(X = x, Y = y) = e^{\theta_1+\theta_2+\theta_3} \frac {\theta_1^x}{x!} \frac {\theta_2^y}{y!} \sum {k = 0}{min(x,y)} \left( \begin{array}{c} x \\ k \end{array} \right) \left( \begin{array}{c} y \\ k \end{array} \right) k! \left( \frac{\theta_3}{\theta_1 \theta_2} \right)^k

Marginally, we get :
X \sim POI (\theta_1+\theta_3)
Y \sim POI (\theta_2+\theta_3)
\theta_1, \theta_2, \theta_3 ≥ 0
Then, the cov(X,Y) = \theta_3

That's all information I have, but I have no idea how to get \theta_3 as the covariance of (X,Y). Please share anything you know about the way to get that value !
Thanks a lot
 
Physics news on Phys.org
Your notation is screwed up.
 
I'm sorry, I'm a very new member here so I still confuse how to make equation correctly, I think it's just like writing equation in LaTEX..
anyway, thanks for your reply.. I'll try to rewrite it correctly
 
Let Xi ~ Poisson (θi) , i = 1,2,3
consider
X = X1 + X3
Y = X2 + X3

this two random variables X and Y follow the bivariate poisson distribution so that
X ~ Poisson (θ1 + θ3)
Y ~ Poisson (θ2 + θ3)

and then the covariance of the bivariate poisson distribution is
Cov(X,Y) = θ3

I just don't know how to get θ3 as the covariance of this distribution.. please share me the way to get that Cov(X,Y) = θ3
Thanks
 
I am not familiar with your notation. However, assuming Xi are independent, then the covariance between X and Y involves only X3.
 
Oh, I am sorry.. maybe it's because the notations we usually used are different..

Oke, I get it.. but I am confused how to explain it in mathematics equation
Like we know,
Cov(XY) = Cov(X1+X3,X2+X3)
then, how must I explain about the assumption of independency between X1 and X2 in mathematics form?
 
Oh, I get it..

Correct me if I'm wrong

Cov(X,Y) = Cov(X1+X3,X2+X3)
= Cov(X1,X2+X3) + Cov(X3,X2+X3)
= Cov(X1,X2) + Cov(X1,X3) + Cov(X3,X2) + Cov(X3,X3)

but because there's assumption that Xi independent, so
Cov(X1,X2) = 0
Cov(X1,X3) = 0
Cov(X3,X2) = 0

and then I get

Cov(X,Y) = Cov(X3,X3)
= Var(X3)
= θ3

Am I wrong?
 
Your derivation is absolutely correct!
 
wow, okay.. thanks a lot for your help..
:) :) :)
 
Back
Top