I How to get the energy eigenvalue of the Hamiltonian: H0+λp/m ?

Jiangwei Du
Messages
2
Reaction score
0
TL;DR Summary
We have already know the energy eigenvalue E0 of initial Hamiltonian H0. So when we add the extra item-λp/m, how the energy eigenvalue will vary?
Someone says we can choose the new eigenstate: exp(-iλx/hbar)*ψ,and let the momentum operator p acts upon this new state. At the same time, so does p^2. Something miraculous will happen afterwards. My question is: how to image this point? Thank you very much.
 
Physics news on Phys.org
The idea here is that when the momentum operator p is applied to an eigenstate, it will produce a state with the same energy (eigenvalue) as before. However, when the momentum operator squared, p^2, is applied to this same eigenstate, the result will be a state with a different energy. This is because the momentum operator squared contains additional terms corresponding to higher powers of momentum, which require higher energies to produce states with the same eigenvalue. This is an example of what is known as "quantum tunneling", where particles can pass through "barriers" of energy which would normally be too high to be overcome. In this case, the particle is able to "tunnel" through the barrier by utilizing the energy associated with its momentum.
 
  • Like
Likes Jiangwei Du
azntoon said:
The idea here is that when the momentum operator p is applied to an eigenstate, it will produce a state with the same energy (eigenvalue) as before. However, when the momentum operator squared, p^2, is applied to this same eigenstate, the result will be a state with a different energy. This is because the momentum operator squared contains additional terms corresponding to higher powers of momentum, which require higher energies to produce states with the same eigenvalue. This is an example of what is known as "quantum tunneling", where particles can pass through "barriers" of energy which would normally be too high to be overcome. In this case, the particle is able to "tunnel" through the barrier by utilizing the energy associated with its momentum.
Sorry, I can't understand your statement. Maybe you have strayed from the point.
 
Jiangwei Du said:
Someone says
Where? Please give a reference.
 
You can try to complete the square.
 
Jiangwei Du said:
TL;DR Summary: We have already know the energy eigenvalue E0 of initial Hamiltonian H0. So when we add the extra item-λp/m, how the energy eigenvalue will vary?

Someone says we can choose the new eigenstate: exp(-iλx/hbar)*ψ,and let the momentum operator p acts upon this new state. At the same time, so does p^2. Something miraculous will happen afterwards. My question is: how to image this point? Thank you very much.
You can establish a linear dispersion relation with a term like ##v \mathbf{\sigma} \cdot \mathbf{p}## and you can add it your p^2 term to get some generalised k.p approximation useful for some semiconductors/semimentals. Is this what is motivating your question?
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top