How to Integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)?

Click For Summary

Discussion Overview

The discussion revolves around the integration of the expression (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5). Participants explore various methods and substitutions for solving the integral, including trigonometric and hyperbolic substitutions.

Discussion Character

  • Mathematical reasoning
  • Technical explanation
  • Exploratory

Main Points Raised

  • One participant asks how to integrate the expression, indicating a need for assistance.
  • Another participant suggests that there may be an easier way to solve the integral and presents a method involving integration by parts.
  • A different participant proposes a substitution of u = x + 1 and discusses the resulting integral in terms of trigonometric functions.
  • Further elaboration includes a detailed breakdown of the integral using trigonometric identities and reduction formulas.
  • Another participant also suggests a hyperbolic substitution and provides a lengthy derivation, indicating the complexity of the integral.
  • One participant notes the simplification of the integral under the radical, leading to a different form of the integral.

Areas of Agreement / Disagreement

There is no consensus on a single method for solving the integral, as multiple approaches are proposed, and participants express differing preferences for substitutions and techniques.

Contextual Notes

Participants do not resolve the complexity of the integral, and various assumptions about the methods and substitutions remain unverified.

annie122
Messages
51
Reaction score
0
how do i integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)??
 
Physics news on Phys.org
Re: integration

Yuuki said:
how do i integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)??

Hello.

It is possible, that there is an easier way of solving the integral. But it could also be determined:

\displaystyle \int \ (x^2+2x+1) \sqrt{4x^2+8x+5}

\displaystyle \int \ (x+1)(x+1) \sqrt{4(x+1)^2+1}

u=x+1

v'=(x+1) \sqrt{4(x+1)^2+1}\displaystyle \ (uv)'=u'v+uv'

\displaystyle \int \ (uv)'= \int \ u'v+ \int \ uv'

Therefore:

\displaystyle \int \ uv' = uv- \int \ u'v

Try to follow.

Regards.
 
thanks, i can solve it now :)
 
Re: integration

mente oscura said:
Hello.

It is possible, that there is an easier way of solving the integral. But it could also be determined:

\displaystyle \int \ (x^2+2x+1) \sqrt{4x^2+8x+5}

\displaystyle \int \ (x+1)(x+1) \sqrt{4(x+1)^2+1}

You have \displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \sqrt{ 4 \left( x + 1 \right) ^2 + 1 } \, dx } \end{align*}, I would lean towards doing a substitution here...

\displaystyle \begin{align*} x + 1 = \frac{1}{2}\tan{\left( \theta \right) } \implies dx = \frac{1}{2} \sec^2{ \left( \theta \right) } \, d\theta \end{align*} and the integral becomes

\displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \sqrt{4 \left( x + 1 \right) ^2 + 1 } \, dx} &= \int{ \left[ \frac{1}{2}\tan{ \left( \theta \right) } \right] ^2 \sqrt{ 4 \left[ \frac{1}{2} \tan{ \left( \theta \right) } \right] ^2 + 1 } \, \frac{1}{2} \sec^2{ \left( \theta \right) } \, d\theta } \\ &= \frac{1}{2} \int{ \frac{1}{4}\tan^2{ \left( \theta \right) } \sec^2{ \left( \theta \right) } \, \sqrt{ \tan^2{ \left( \theta \right) } + 1 } \, d\theta } \\ &= \frac{1}{8} \int{ \tan^2{\left( \theta \right) } \sec^2{ \left( \theta \right) } \sec{\left( \theta \right) } \,d\theta } \\ &= \frac{1}{8} \int{ \left[ \sec^2{\left( \theta \right) } - 1 \right] \sec^3{ \left( \theta \right) } \,d\theta } \\ &= \frac{1}{8} \int{ \sec^5{ \left( \theta \right) } - \sec^3{ \left( \theta \right) } \, d\theta } \\ &= \frac{1}{8}\int{ \frac{1}{\cos^5{ \left( \theta \right) } } - \frac{1}{\cos^3{ \left( \theta \right) } } \, d\theta } \\ &= \frac{1}{8} \int{ \frac{\cos{ \left( \theta \right) } }{\cos^6{ \left( \theta \right) } } - \frac{\cos{ \left( \theta \right) } }{\cos^4{ \left( \theta \right) } } \, d\theta } \\ &= \frac{1}{8} \int{ \cos{ \left( \theta \right) } \left\{ \frac{1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^3 } - \frac{ 1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^2 } \right\} \, d\theta } \end{align*}

Now let \displaystyle \begin{align*} u = \sin{ \left( \theta \right) } \implies du = \cos{ \left( \theta \right) } \, d\theta \end{align*} and the integral becomes

\displaystyle \begin{align*} \frac{1}{8} \int{ \cos{ \left( \theta \right) } \left\{ \frac{1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^3} - \frac{1}{ \left[ 1 - \sin^2{ \left( \theta \right) } \right] ^2 } \right\} \,d\theta } &= \frac{1}{8} \int{ \frac{1}{ \left( 1 - u^2 \right) ^3 } - \frac{1}{ \left( 1 - u^2 \right) ^2 } \, du } \\ &= \frac{1}{8} \int{ \frac{1}{ \left( 1 - u \right) ^3 \left( 1 + u \right) ^3 } - \frac{1}{ \left( 1 - u \right) ^2 \left( 1 + u \right) ^2 } \, du } \end{align*}

Which can be solved using partial fractions.Hmmm, that was a little too messy for my taste. Maybe a different original substitution would have been easier. Try \displaystyle \begin{align*} x + 1 = \frac{1}{2}\sinh{ (t) } \implies dx = \frac{1}{2}\cosh{(t)}\,dt \end{align*} and the integral becomes

\displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \, \sqrt{4 \left( x + 1 \right) ^2 + 1 } \, dx } &= \int{ \left[ \frac{1}{2} \sinh{(t)} \right] ^2 \sqrt{ 4 \left[ \frac{1}{2}\sinh{(t)} \right] ^2 + 1 } \, \frac{1}{2}\cosh{(t)}\,dt } \\ &= \frac{1}{8} \int{ \sinh^2{(t)}\cosh{(t)} \, \sqrt{ \sinh^2{(t)} + 1 } \, dt } \\ &= \frac{1}{8} \int{ \sinh^2{(t)}\cosh^2{(t)} \, dt } \\ &= \frac{1}{8} \int{ \left[ \frac{1}{2} \sinh{(2t)} \right] ^2 \, dt } \\ &= \frac{1}{32} \int{ \sinh^2{(2t)} \, dt } \\ &= \frac{1}{32} \int{ \frac{1}{2} \left[ \cosh{(4t)} - 1 \right] \, dt } \\ &= \frac{1}{64} \int{ \cosh{(4t)} - 1 \, dt } \\ &= \frac{1}{64} \left[ \frac{1}{4}\sinh{(4t)} - t \right] + C \\ &= \frac{1}{256}\sinh{(4t)} - \frac{1}{64}t + C \\ &= \frac{1}{128}\sinh{(2t)}\cosh{(2t)} - \frac{1}{64}t + C \\ &= \frac{1}{64}\sinh{(t)}\cosh{(t)} \left[ 2 \sinh^2{(t)} + 1 \right] - \frac{1}{64}t + C \\ &= \frac{1}{64} \sinh{(t)} \left[ 2 \sinh^2{(t)} + 1 \right] \, \sqrt{ \sinh^2{(t)} + 1 } - \frac{1}{64}t + C \\ &= \frac{1}{32} \left( x + 1 \right) \left\{ 2 \left[ 2 \left( x + 1 \right) \right] ^2 + 1 \right\} \, \sqrt{ \left[ 2 \left( x + 1 \right) \right] ^2 + 1 } - \frac{1}{64}\,\textrm{arsinh}\, { \left[ 2 \left( x + 1 \right) \right] } + C \\ &= \frac{1}{32} \left( x + 1 \right) \left[ 8 \left( x + 1 \right) ^2 + 1 \right] \, \sqrt{ 4 \left( x + 1 \right) ^2 + 1 } - \frac{1}{64} \, \textrm{ arsinh } \, { \left[ 2 \left( x + 1 \right) \right] } + C \end{align*}

PHEW!
 
Hello, Yuuki!

\int (x^2 + 2x + 1)\sqrt{4x^2 + 8x + 5}\,dx
Under the radical, we have:
. . 4(x^2+2x+1) + 1 \:=\:4(x+1)^2+1

The integral becomes: .\int (x+1)^2\sqrt{4(x+1)^2+1}\,dx

Let u \,=\,x+1\quad\Rightarrow\quad dx \,=\,du

Then we have: .\int u^2\sqrt{4u^2+1}\,du

Let u \,=\,\tfrac{1}{2}\tan\theta \quad \Rightarrow\quad du \,=\,\tfrac{1}{2}\sec^2\!\theta\,d\theta

And we have: .\int\left(\tfrac{1}{2}\tan\theta\right)^2\left( \sec\theta\right)\left( \tfrac{1}{2}\sec^2\!\theta\,d\theta\right)

. . =\;\tfrac{1}{8}\int\sec^3\!\theta\tan^2\!\theta\,d\theta \;=\;\tfrac{1}{8}\int\sec^3\!\theta(\sec^2\!\theta -1)\,d\theta

. . =\;\tfrac{1}{8}\int(\sec^5\!\theta - \sec^3\!\theta)\,d\thetaApply the reduction formula:
. . \int \sec^n\!x\,dx \;=\;\frac{1}{2}\left[\sec^{n-2}\!x\tan x + \int\sec^{n-2}\!x\,dx\right]

and remember to back-substitute.
 

Similar threads

Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K