MHB How to Integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)?

Click For Summary
The discussion focuses on integrating the expression (x^2 + 2x + 1)√(4x^2 + 8x + 5). Participants suggest using substitution methods to simplify the integral, particularly by letting u = x + 1, which transforms the integral into a more manageable form. Various substitution techniques, including trigonometric and hyperbolic functions, are explored to facilitate the integration process. The integration ultimately leads to expressions involving secant and hyperbolic sine functions, with participants noting the potential complexity of the calculations. The conversation emphasizes the importance of choosing the right substitution to simplify the integration task effectively.
annie122
Messages
51
Reaction score
0
how do i integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)??
 
Physics news on Phys.org
Re: integration

Yuuki said:
how do i integrate (x^2 + 2x + 1)sqrt(4x^2 + 8x + 5)??

Hello.

It is possible, that there is an easier way of solving the integral. But it could also be determined:

\displaystyle \int \ (x^2+2x+1) \sqrt{4x^2+8x+5}

\displaystyle \int \ (x+1)(x+1) \sqrt{4(x+1)^2+1}

u=x+1

v'=(x+1) \sqrt{4(x+1)^2+1}\displaystyle \ (uv)'=u'v+uv'

\displaystyle \int \ (uv)'= \int \ u'v+ \int \ uv'

Therefore:

\displaystyle \int \ uv' = uv- \int \ u'v

Try to follow.

Regards.
 
thanks, i can solve it now :)
 
Re: integration

mente oscura said:
Hello.

It is possible, that there is an easier way of solving the integral. But it could also be determined:

\displaystyle \int \ (x^2+2x+1) \sqrt{4x^2+8x+5}

\displaystyle \int \ (x+1)(x+1) \sqrt{4(x+1)^2+1}

You have \displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \sqrt{ 4 \left( x + 1 \right) ^2 + 1 } \, dx } \end{align*}, I would lean towards doing a substitution here...

\displaystyle \begin{align*} x + 1 = \frac{1}{2}\tan{\left( \theta \right) } \implies dx = \frac{1}{2} \sec^2{ \left( \theta \right) } \, d\theta \end{align*} and the integral becomes

\displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \sqrt{4 \left( x + 1 \right) ^2 + 1 } \, dx} &= \int{ \left[ \frac{1}{2}\tan{ \left( \theta \right) } \right] ^2 \sqrt{ 4 \left[ \frac{1}{2} \tan{ \left( \theta \right) } \right] ^2 + 1 } \, \frac{1}{2} \sec^2{ \left( \theta \right) } \, d\theta } \\ &= \frac{1}{2} \int{ \frac{1}{4}\tan^2{ \left( \theta \right) } \sec^2{ \left( \theta \right) } \, \sqrt{ \tan^2{ \left( \theta \right) } + 1 } \, d\theta } \\ &= \frac{1}{8} \int{ \tan^2{\left( \theta \right) } \sec^2{ \left( \theta \right) } \sec{\left( \theta \right) } \,d\theta } \\ &= \frac{1}{8} \int{ \left[ \sec^2{\left( \theta \right) } - 1 \right] \sec^3{ \left( \theta \right) } \,d\theta } \\ &= \frac{1}{8} \int{ \sec^5{ \left( \theta \right) } - \sec^3{ \left( \theta \right) } \, d\theta } \\ &= \frac{1}{8}\int{ \frac{1}{\cos^5{ \left( \theta \right) } } - \frac{1}{\cos^3{ \left( \theta \right) } } \, d\theta } \\ &= \frac{1}{8} \int{ \frac{\cos{ \left( \theta \right) } }{\cos^6{ \left( \theta \right) } } - \frac{\cos{ \left( \theta \right) } }{\cos^4{ \left( \theta \right) } } \, d\theta } \\ &= \frac{1}{8} \int{ \cos{ \left( \theta \right) } \left\{ \frac{1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^3 } - \frac{ 1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^2 } \right\} \, d\theta } \end{align*}

Now let \displaystyle \begin{align*} u = \sin{ \left( \theta \right) } \implies du = \cos{ \left( \theta \right) } \, d\theta \end{align*} and the integral becomes

\displaystyle \begin{align*} \frac{1}{8} \int{ \cos{ \left( \theta \right) } \left\{ \frac{1}{\left[ 1 - \sin^2{ \left( \theta \right) } \right] ^3} - \frac{1}{ \left[ 1 - \sin^2{ \left( \theta \right) } \right] ^2 } \right\} \,d\theta } &= \frac{1}{8} \int{ \frac{1}{ \left( 1 - u^2 \right) ^3 } - \frac{1}{ \left( 1 - u^2 \right) ^2 } \, du } \\ &= \frac{1}{8} \int{ \frac{1}{ \left( 1 - u \right) ^3 \left( 1 + u \right) ^3 } - \frac{1}{ \left( 1 - u \right) ^2 \left( 1 + u \right) ^2 } \, du } \end{align*}

Which can be solved using partial fractions.Hmmm, that was a little too messy for my taste. Maybe a different original substitution would have been easier. Try \displaystyle \begin{align*} x + 1 = \frac{1}{2}\sinh{ (t) } \implies dx = \frac{1}{2}\cosh{(t)}\,dt \end{align*} and the integral becomes

\displaystyle \begin{align*} \int{ \left( x + 1 \right) ^2 \, \sqrt{4 \left( x + 1 \right) ^2 + 1 } \, dx } &= \int{ \left[ \frac{1}{2} \sinh{(t)} \right] ^2 \sqrt{ 4 \left[ \frac{1}{2}\sinh{(t)} \right] ^2 + 1 } \, \frac{1}{2}\cosh{(t)}\,dt } \\ &= \frac{1}{8} \int{ \sinh^2{(t)}\cosh{(t)} \, \sqrt{ \sinh^2{(t)} + 1 } \, dt } \\ &= \frac{1}{8} \int{ \sinh^2{(t)}\cosh^2{(t)} \, dt } \\ &= \frac{1}{8} \int{ \left[ \frac{1}{2} \sinh{(2t)} \right] ^2 \, dt } \\ &= \frac{1}{32} \int{ \sinh^2{(2t)} \, dt } \\ &= \frac{1}{32} \int{ \frac{1}{2} \left[ \cosh{(4t)} - 1 \right] \, dt } \\ &= \frac{1}{64} \int{ \cosh{(4t)} - 1 \, dt } \\ &= \frac{1}{64} \left[ \frac{1}{4}\sinh{(4t)} - t \right] + C \\ &= \frac{1}{256}\sinh{(4t)} - \frac{1}{64}t + C \\ &= \frac{1}{128}\sinh{(2t)}\cosh{(2t)} - \frac{1}{64}t + C \\ &= \frac{1}{64}\sinh{(t)}\cosh{(t)} \left[ 2 \sinh^2{(t)} + 1 \right] - \frac{1}{64}t + C \\ &= \frac{1}{64} \sinh{(t)} \left[ 2 \sinh^2{(t)} + 1 \right] \, \sqrt{ \sinh^2{(t)} + 1 } - \frac{1}{64}t + C \\ &= \frac{1}{32} \left( x + 1 \right) \left\{ 2 \left[ 2 \left( x + 1 \right) \right] ^2 + 1 \right\} \, \sqrt{ \left[ 2 \left( x + 1 \right) \right] ^2 + 1 } - \frac{1}{64}\,\textrm{arsinh}\, { \left[ 2 \left( x + 1 \right) \right] } + C \\ &= \frac{1}{32} \left( x + 1 \right) \left[ 8 \left( x + 1 \right) ^2 + 1 \right] \, \sqrt{ 4 \left( x + 1 \right) ^2 + 1 } - \frac{1}{64} \, \textrm{ arsinh } \, { \left[ 2 \left( x + 1 \right) \right] } + C \end{align*}

PHEW!
 
Hello, Yuuki!

\int (x^2 + 2x + 1)\sqrt{4x^2 + 8x + 5}\,dx
Under the radical, we have:
. . 4(x^2+2x+1) + 1 \:=\:4(x+1)^2+1

The integral becomes: .\int (x+1)^2\sqrt{4(x+1)^2+1}\,dx

Let u \,=\,x+1\quad\Rightarrow\quad dx \,=\,du

Then we have: .\int u^2\sqrt{4u^2+1}\,du

Let u \,=\,\tfrac{1}{2}\tan\theta \quad \Rightarrow\quad du \,=\,\tfrac{1}{2}\sec^2\!\theta\,d\theta

And we have: .\int\left(\tfrac{1}{2}\tan\theta\right)^2\left( \sec\theta\right)\left( \tfrac{1}{2}\sec^2\!\theta\,d\theta\right)

. . =\;\tfrac{1}{8}\int\sec^3\!\theta\tan^2\!\theta\,d\theta \;=\;\tfrac{1}{8}\int\sec^3\!\theta(\sec^2\!\theta -1)\,d\theta

. . =\;\tfrac{1}{8}\int(\sec^5\!\theta - \sec^3\!\theta)\,d\thetaApply the reduction formula:
. . \int \sec^n\!x\,dx \;=\;\frac{1}{2}\left[\sec^{n-2}\!x\tan x + \int\sec^{n-2}\!x\,dx\right]

and remember to back-substitute.
 
Thread 'Problem with calculating projections of curl using rotation of contour'
Hello! I tried to calculate projections of curl using rotation of coordinate system but I encountered with following problem. Given: ##rot_xA=\frac{\partial A_z}{\partial y}-\frac{\partial A_y}{\partial z}=0## ##rot_yA=\frac{\partial A_x}{\partial z}-\frac{\partial A_z}{\partial x}=1## ##rot_zA=\frac{\partial A_y}{\partial x}-\frac{\partial A_x}{\partial y}=0## I rotated ##yz##-plane of this coordinate system by an angle ##45## degrees about ##x##-axis and used rotation matrix to...

Similar threads

Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
1K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 3 ·
Replies
3
Views
3K