How to obtain Hamiltonian in a magnetic field from EM field?

Click For Summary
SUMMARY

The discussion focuses on deriving the Hamiltonian for a charged particle in a magnetic field, specifically under the influence of an electromagnetic field. The Lagrangian is established as ##L=\frac{1}{2}mv^2-e\phi+e\vec{v}\cdot\vec{A}##, leading to the Hamiltonian ##H=\frac{1}{2m}(\vec{p}-e\vec{A})^2 +e\phi##. For a constant magnetic field ##\vec{B}=(0,0,B)##, the Hamiltonian simplifies to ##H=\frac{1}{2m}(\vec{p}-e\vec{A})^2##, with the scalar potential ##\phi## set to zero when the electric field ##\vec{E}## is also zero. The discussion emphasizes the importance of gauge transformations in determining the vector potential.

PREREQUISITES
  • Understanding of Lagrangian mechanics
  • Familiarity with Hamiltonian mechanics
  • Knowledge of electromagnetic theory, particularly vector and scalar potentials
  • Proficiency in calculus, specifically differential equations
NEXT STEPS
  • Study the derivation of the Euler-Lagrange equations in classical mechanics
  • Explore gauge transformations in electromagnetism
  • Learn about the implications of scalar and vector potentials in magnetic fields
  • Investigate the relationship between electric and magnetic fields in the context of charged particle dynamics
USEFUL FOR

This discussion is beneficial for physicists, particularly those specializing in classical mechanics and electromagnetism, as well as students and researchers interested in the dynamics of charged particles in electromagnetic fields.

Salmone
Messages
101
Reaction score
13
To calculate the Hamiltonian of a charged particle immersed in an electromagnetic field, one calculates the Lagrangian with Euler's equation obtaining ##L=\frac{1}{2}mv^2-e\phi+e\vec{v}\cdot\vec{A}## where ##\phi## is the scalar potential and ##\vec{A}## the vector potential, and then we go to the Hamiltonian by calculating the conjugate momentum which is ##\vec{p}=m\vec{v}+e\vec{A}## obtaining ##H=\frac{1}{2m}(\vec{p}-e\vec{A})^2 +e\phi##. In the case of a particle immersed in a constant magnetic field ##\vec{B}=(0,0,B)## the Hamiltonian is ##H=\frac{1}{2m}(\vec{p}-e\vec{A})^2##, but how is this obtained? Do you go directly from the ##H## in the EM field or do you compute the Lagrangian from zero?
 
Physics news on Phys.org
I don't know, what you question is. If it's about, how the Lagrangian is derived, it's simply that via the Euler-Lagrange equations you get the correct (non-relativistic) equation of motion for a charged particle in the em. field, i.e.,
$$m \ddot{\vec{x}}=e (\vec{E}+\vec{v} \times \vec{B}),$$
where
$$\vec{E}=-\partial_t \vec{A} -\vec{\nabla} \phi, \quad \vec{B}=\vec{\nabla} \times \vec{A}.$$
For the homogeneous magnetic field you can use
$$\vec{A}=\frac{1}{2} \vec{B} \times \vec{x}, \quad \phi=0.$$
 
  • Like
Likes   Reactions: Salmone
vanhees71 said:
I don't know, what you question is. If it's about, how the Lagrangian is derived, it's simply that via the Euler-Lagrange equations you get the correct (non-relativistic) equation of motion for a charged particle in the em. field, i.e.,
$$m \ddot{\vec{x}}=e (\vec{E}+\vec{v} \times \vec{B}),$$
where
$$\vec{E}=-\partial_t \vec{A} -\vec{\nabla} \phi, \quad \vec{B}=\vec{\nabla} \times \vec{A}.$$
For the homogeneous magnetic field you can use
$$\vec{A}=\frac{1}{2} \vec{B} \times \vec{x}, \quad \phi=0.$$
I know how Lagrangian and Hamiltonian are derived in the case of a charged particle inside an electromagnetic field, I don't know how to derive the Hamiltonian in the case of a charged particle in a magnetic field of type ##\vec{B}=(0,0,B)##. Why do I have to use that Gauge transformation? If ##\vec{E}=0##, then what I obtain is ##\vec{\nabla} \phi=0##.
 
For the homogeneous magnetic field, for the Hamiltonian you need just some vector potential, which is of course determined only up to a gauge transformation, i.e., any other vector potential
$$\vec{A}'=\vec{A}-\vec{\nabla} \chi$$
describes the same homogeneous ##\vec{B}##-field, for any arbitrary scalar field, ##\chi##.
 
  • Like
Likes   Reactions: Salmone
Yes but how do we obtain that ##\phi=0## from the consideration that ##\vec{E}=0## and that ##\vec{B}=(0,0,B)##? We have an EM Hamiltonian ##H=\frac{1}{2m}(\vec{p}-e\vec{A})^2 +e\phi##, now we set ##\vec{E}=0## and ##\vec{B}=(0,0,B)##, what are logical consequencies that lead us to the final Hamiltonian?
 
You just need a vector and a scalar potential such that
$$\vec{E}=-\partial_t \vec{A}-\vec{\nabla} \phi=0, \quad \vec{\nabla} \times \vec{A}=\vec{B}=\text{const}.$$
It's obvious that you can make the potentials time independent. Then from the first equation you have ##\phi=\text{const}##. Then it's easy to check that a possible choice for the vector potential is
$$\vec{A}=\frac{1}{2} \vec{A} \times \vec{x}.$$
 
  • Like
Likes   Reactions: Salmone
Okay, thank you so much.
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 23 ·
Replies
23
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
4
Views
2K
  • · Replies 14 ·
Replies
14
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K