- #1
Salmone
- 101
- 13
If I have two separated and non-interacting molecules with different constants polarizabilities ##\alpha_1## and ##\alpha_2## and I send an EM field of frequency ##\omega## first on the molecule no.##1## and then on the molecule no.##2## so that the two molecules will have a dipole moment ##\vec{p_1}=\alpha_1\vec{E}## and ##\vec{p_2}=\alpha_2\vec{E}.## What differences will there be in the two molecules?
1) Will they both oscillate with the same frequency as the EM field?
2) What does the difference in polarizability imply? That they will oscillate with the same ##\omega## but the oscillations of the molecule with the larger ##\alpha## will have larger amplitude?
3) Can one know by spectroscopy which of the two molecules has greater polarizability? I mean, we send EM field on the molecules and then the molecules begin to oscillate and generate a new EM field, in the domain of the frequencies we see the external EM field at frequency ##\omega## and the EM field produced by the molecules at the same ##\omega## (if my hypothesis are right), so is it possible to distinguish, by spectroscopy, two differents polarizability in a case like this one?
1) Will they both oscillate with the same frequency as the EM field?
2) What does the difference in polarizability imply? That they will oscillate with the same ##\omega## but the oscillations of the molecule with the larger ##\alpha## will have larger amplitude?
3) Can one know by spectroscopy which of the two molecules has greater polarizability? I mean, we send EM field on the molecules and then the molecules begin to oscillate and generate a new EM field, in the domain of the frequencies we see the external EM field at frequency ##\omega## and the EM field produced by the molecules at the same ##\omega## (if my hypothesis are right), so is it possible to distinguish, by spectroscopy, two differents polarizability in a case like this one?
Last edited: