How to picture the magnetic vector potental A

AI Thread Summary
The magnetic vector potential A is related to the magnetic field B through the curl operation, where the circulation of A around a point indicates the presence of B. While A can be mathematically manipulated through gauge transformations without changing the resulting B field, it is often viewed as a mathematical convenience in classical electromagnetism. In quantum physics, A plays a crucial role, as particles can be influenced by it even in regions where B is zero, exemplified by the Aharonov-Bohm effect. The Lorenz gauge provides a way to visualize A as being influenced by current components, although it complicates the interpretation of forces. Overall, A exists as a useful concept in both classical and quantum contexts, despite debates about its physicality.
si22
Messages
4
Reaction score
0
whats a good way to picture the vector potental A in terms of B & like what exactly is A & how does it even exist outside a torus where B & etc =0

for example its easy to see the electric potential uses the electric field E like E*ds & its quite obvious,
wheras how does A not even contain the B field

also why is A sometimes said to not even exist or is just a paper shortcut when it actualy seems to work or exist in some way. thanks
 
Physics news on Phys.org
Since the curl of the vector potential A is equal to the magnetic field B, a good way to think of it is that A circulates around any point where B is nonzero--its net circulation around a point gives the B field at that point, according to the right-hand rule. It is important to remember though that you can always write down different A's to produce the same B field--this is called choosing a gauge. For example, a uniform B field in the z direction could be represented by any of the following:
A = -By i
A = Bx j
A = -By/2 i + Bx/2 j
where i is the unit vector in the x direction, and j is the unit vector in the y direction, and B is the magnitude of B.
If you plot these, you will see that they all look quite different, but they all circulate around in a similar fashion.

In classical E&M, the B field is the measurable quantity, so A is said to just be a mathematical convenience. However, in quantum physics, particles can be affected by magnetism even if they never pass through a region of nonzero B--instead they directly interact with A. A good example is the Aharanov-Bohm effect: http://en.wikipedia.org/wiki/Aharanov-Bohm_effect
 
What do you mean the vector potential ##A## isn't given in terms of the magnetic field ##B##? ##\nabla \times A = B## so you can picture it in terms of the usual geometric interpretation of the curl (think of the vorticity of velocity fields of fluids). The reason classically that ##A## is said to simply be a purely mathematical field (and not a physical field) is because it is not a gauge invariant quantity. I can take ##A \rightarrow A + \nabla \varphi## and I will still get the same physical magnetic field ##B## i.e. ##\nabla \times (A + \nabla \varphi) =\nabla \times A##.
 
I've found it helpful to look at the vector potential in the Lorenz gauge -- where each component of the vector potential acts like an independent scalar potential for the corresponding current component...so you can imagine each infinitesimal current-element in the <x, y, z> direction as a source for a corresponding 1/r A field whose vector points in the same <x, y, z> direction. What you lose, though, is the ability to see the direction of the Lorentz force by just comparing the directions of two vectors at a single point.
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
Back
Top