HallsofIvy said:
Let A be a finite set with, say, n elements (which means there exist a one to one and onto function A-> {1, 2, ..., n}), f a one to one function from A to itself. If f were not "onto", then B= f(A) is a proper subset of A. Since B is a proper subset of finite set A, it smaller than A: there exist a one to one onto function B->{1, 2, ... m} with m< n. But then we have a one to one function from A onto B and so can define a one to one function from {1, 2, ..., n} onto {1, 2, ..., m}.
Thanks, professor! That is a beautiful proof. I think my problem is solved.
But, I can't help but show some interesting point here.
First, I think a set A is finite if and only if there exist some n which we refer to as the size of A, such that "there exist a one to one and onto function A-> {1, 2, ..., n}" as the professor says.
In the proof given by the professor, we should prove "Since B is a proper subset of finite set A, it smaller than A: there exist a one to one onto function B->{1, 2, ... m} with m< n." which seem obvious at first sight.
The ground is this theorem: if there exist a one to one and onto function A-> {1, 2, ..., n}, then for any x in A the following is true: there exist a one to one and onto function Ax-> {1, 2, ..., n-1} where Ax={y|y is in A and y!=x}
Proof: there has to be a p in A such f(p)=n, if we make f'(p)=f(x), f'(x)=n,f'(y)=f(y) elsewhere, f' is also an one to one and onto function.
We make a function g Ax->{1,2,...,n-1} by g(y)=f'(y) which can be done because that if y is in Ax then it is also in A, and obviously g is an one to one and onto function.