alyafey22
Gold Member
MHB
- 1,556
- 2
HI folks , working on Stirling nums , how to prove ?
$$s(n,3)=\frac{1}{2}(-1)^{n-1}(n-1)!\left(H_{n-1}^2-H_{n-1}^{(2)}\right)
$$
where we define $$H_k^{(n)}= \sum_{m=1}^k \frac{1}{m^n}$$
I don't how to start (Bandit)
$$s(n,3)=\frac{1}{2}(-1)^{n-1}(n-1)!\left(H_{n-1}^2-H_{n-1}^{(2)}\right)
$$
where we define $$H_k^{(n)}= \sum_{m=1}^k \frac{1}{m^n}$$
I don't how to start (Bandit)
Last edited: