Proving Summation nCk p^k q^n-k =1

  • Thread starter Thread starter sajee3a
  • Start date Start date
sajee3a
Messages
1
Reaction score
0
1)given that: (1+x)^n=summation nCk X^K

PROVE: SUMMATION nCk p^k q^n-k =1, where p+q=1
2) prove the general law of addition: P(E1 U E2 U...U En)=sum P(Ei)-sum P(EiEj)+sum P(EiEjEk)-...(-1)^n-1 P(E1E2...En)
 
Physics news on Phys.org
For 1:
1=(p+q)n=qn(1+(p/q))n=qnΣnCk(p/q)k=ΣnCkpkqn-k
 
Back
Top