How to show something is a sigma-algebra

  • Thread starter Thread starter muso07
  • Start date Start date
muso07
Messages
53
Reaction score
0

Homework Statement


I was reading this Wiki article: http://en.wikipedia.org/wiki/Sigma-algebra and don't quite understand one of the examples.

"The collection of subsets of X which are countable or whose complements are countable (which is distinct from the power set of X if and only if X is uncountable.). This is the σ-algebra generated by the singletons of X."


Homework Equations


1. Σ is not empty,
2. Σ is closed under complements: If E is in Σ then so is the complement (X \ E) of E,
3. Σ is closed under countable unions: The union of countably many sets in Σ is also in Σ.

The Attempt at a Solution


I kind of understand sigma-algebra, but I really don't get this example... If it's the sigma-algebra generated by singletons, then how can the first property be satisfied?
 
Physics news on Phys.org


Nevermind, I figured it out. :)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top