How to Simplify the Hamiltonian for a Homogeneous System in Scaled Coordinates?

greisen
Messages
75
Reaction score
0
I have to show that the hamiltonian for a homogeneous system can be simplified in scaled coordinates.
The first two terms I can convert to scaled coordinates <T>+<V> whereas I have some trouble for the last term

-½*\int d³r d³r&#039; \frac{n²}{|r-r&#039;|}

where n is the density. The scaled coordinates can be expressed as \tilde{r}=\frac{a_0}{r_s} - r_s is a average distance between electrons and the expression can be written as

-\frac{3}{4\pi} \int d³\tilde{r} \frac{1}{\tilde{r}}

I have some troubles getting the last part - how can the two d³r d³r' be reduced to d³\tilde{r} - any hints or advise appreciated
thanks in advance
 
Last edited by a moderator:
Physics news on Phys.org
I can see that some of the exponents have vanished so the integral which gives me problems is

- \int dr^{3} dr'^{3} \frac{n^{2}}{|r-r'|}

which in scaled coordinates can be written as

- \frac{3}{4*pi}\int d\tilde{r}^{3} \frac{1}{\tilde{r}}
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top