MHB How to Solve ∛(7+5√2) - ∛(5√2-7) for Junior Olympiad?

  • Thread starter Thread starter ranga519
  • Start date Start date
AI Thread Summary
The discussion focuses on solving the expression ∛(7+5√2) - ∛(5√2-7) from a junior Olympiad problem. Participants explore whether 5√2 + 7 is a cube and suggest methods for finding a solution. One effective approach involves expressing the terms in terms of a cubic equation, leading to the conclusion that the sum of the cube roots equals 2. The final solution confirms that the only real root of the derived polynomial is x = 2. The thread highlights collaborative problem-solving and the usefulness of the forum for mathematical inquiries.
ranga519
Messages
4
Reaction score
0
Hi,I'm new to this website.
This a question i came across in a junior Olympiad paper.Need help solving it.Thanks

∛(7+5√2) - ∛(5√2-7)
 
Mathematics news on Phys.org
Hi ranga519 and welcome to MHB! :D

How can we check if $5\sqrt2+7$ is a cube? That is, if there is a number that, when cubed, is equal to $5\sqrt2+7$, how can we find it?
 
ranga519 said:
Hi,I'm new to this website.
This a question i came across in a junior Olympiad paper.Need help solving it.Thanks

∛(7+5√2) - ∛(5√2-7)

I would take Greg's advice and write:

$$5\sqrt{2}\pm7=(b\sqrt{2}\pm a)^3=\pm a^3+3\sqrt{2}a^2b\pm6ab^2+2\sqrt{2}b^3=\left(3a^2b+2b^3\right)\sqrt{2}\pm\left(a^3+6ab^2\right)$$

We can see by inspection that one solution is:

$$(a,b)=(1,1)$$

Hence:

$$\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{(\sqrt{2}+1)^3}-\sqrt[3]{(\sqrt{2}-1)^3}=(\sqrt{2}+1)-(\sqrt{2}-1)=2$$
 
Let $u = \sqrt[3]{7+5\sqrt{2}}$ and $v= \sqrt[3]{7-5\sqrt{2}}$. We're interested in the sum $u+v$. First, observe that $u \cdot v = -1$. Also, $(u+v)^3 = u^3+3uv (u+v)+v^3$ and since $u \cdot v = -1$ and $u^3+v^3 = 14$ we have $(u+v)^3 = 14-3(u+v).$ Now let $x=u+v$. It now becomes solving the polynomial $x^3+3x-14 = 0$. By inspection, $x=2$ satisfies the equation, and thus we can write it as $(x-2)(x^2+2x+7)=0$, and we easily see that it has no other real roots. Hence $x=2$ is the only real root; hence $u+v=2$.
 
Thank you very much for the help,
I find this website really helpful.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.

Similar threads

Back
Top