How to solve a differential equation for a mass-spring oscillator?

Click For Summary
The discussion centers on solving a differential equation for a mass-spring oscillator affected by friction. The derived equation incorporates spring force and friction, leading to a complex form that includes the hyperbolic tangent function. Participants express uncertainty about solving it analytically due to the velocity term in the friction equation, suggesting that a small amplitude approximation may be necessary. The conversation highlights the need for numerical values for parameters like stiffness, friction coefficient, and mass to proceed further. Ultimately, the consensus leans towards numerical methods as the likely solution approach.
bolzano95
Messages
89
Reaction score
7
Homework Statement
There is an mass-spring oscillator made of a spring with stiffness k and a block of mass m. The block is affected by a friction.
At the time ##t=0s## the block is pulled from the equilibrium position for ##x=5cm## in the right direction and released.
Derive and solve the equation for a displacement x, velocity v and power P.
Relevant Equations
II. Newton's Law
There is an mass-spring oscillator made of a spring with stiffness k and a block of mass m. The block is affected by a friction given by the equation:
$$F_f = -k_f N tanh(\frac{v}{v_c})$$
##k_f## - friction coefficient
N - normal force
##v_c## - velocity tolerance.

At the time ##t=0s## the block is pulled from the equilibrium position for ##x=5cm## in the right direction and released.
1. Derive the differential equation.
2. Solve it for a displacement x.
3. Solve it for a velocity v.
4. Solve it for the power loss P, because of the friction.

image1.png

1. Deriving the necessary equation:
In the vertical direction: N=mg.
Because the only forces acting on the block in horizontal direction are the spring force and friction we can write:
$$-kx + k_f\, N\, tanh(\frac{\dot{x}}{v_c})=m\ddot{x}$$
$$m\ddot{x} - k_f\: mg\: tanh(\frac{\dot{x}}{v_c}) +kx=0$$

Here my solving stops, because I'm not sure how to implement the standard solution ##x(t)= Ce^{\lambda t}## because velocity is inside the function ##tanh(\frac{\dot{x}}{v_c})##.
 
Physics news on Phys.org
You are given a numerical value for the initial displacement. Are you given numerical values for any of the other parameters such as ##k, k_f, v_c## and ##m##?

At first glance, the differential equation looks difficult to solve unless you can make a small amplitude approximation such that ##\dot x## is always much less than ##v_c##.
 
TSny said:
You are given a numerical value for the initial displacement. Are you given numerical values for any of the other parameters such as ##k, k_f, v_c## and ##m##?

At first glance, the differential equation looks difficult to solve unless you can make a small amplitude approximation such that ##\dot x## is always much less than ##v_c##.
Oh yes, the initial conditions and parameters of the system given.

So there is no chance of solving this analytically, only numerically?
 
If have close pipe system with water inside pressurized at P1= 200 000Pa absolute, density 1000kg/m3, wider pipe diameter=2cm, contraction pipe diameter=1.49cm, that is contraction area ratio A1/A2=1.8 a) If water is stationary(pump OFF) and if I drill a hole anywhere at pipe, water will leak out, because pressure(200kPa) inside is higher than atmospheric pressure (101 325Pa). b)If I turn on pump and water start flowing with with v1=10m/s in A1 wider section, from Bernoulli equation I...

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
Replies
6
Views
910
Replies
9
Views
2K
Replies
1
Views
996
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 24 ·
Replies
24
Views
1K
Replies
17
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
Replies
8
Views
1K
Replies
7
Views
1K