MHB How to Solve a Geometric Sequence with Given Differences?

rsyed5
Messages
5
Reaction score
0
I have no idea how to solve this equation, its in my homework... i know the formula to find the nth term(tn=ar^n-1) but don't know how to solve this:

The difference between the first term and second term in a geometric sequence is 6.The difference between the second term and the third term is 3. The difference between the third term and the fourth term is 3/2. Find the nth term in the sequence...

Thanks in advance:)
 
Mathematics news on Phys.org
We may state:

$$a-ar=6$$

$$ar-ar^2=3$$

We now have two equations and two unknowns. I suggest solving the first equation for $r$, then substitute into the second to get an equation in $a$ only, which you can then solve. Once you have determined the value of $a$, then use that in your expression for $r$ in terms of $a$ to get the value of $r$. Then use:

$$t_n=ar^{n-1}$$

for the $n$th term. :D
 
rsyed5 said:
I have no idea how to solve this equation, its in my homework... i know the formula to find the nth term(tn=ar^n-1) but don't know how to solve this:

The difference between the first term and second term in a geometric sequence is 6.The difference between the second term and the third term is 3. The difference between the third term and the fourth term is 3/2. Find the nth term in the sequence...

Thanks in advance:)

If the general term is $\displaystyle t_{n}= a\ r^{n-1}$ You have two unknown variables a and r and three equations...

$\displaystyle a\ (1-r)=6$

$\displaystyle a\ r\ (1-r)=3$

$\displaystyle a\ r^{2}\ (1-r)=\frac{3}{2}$

... so that the problem is overdimensioned. In this case the solution $\displaystyle a=12,\ r= \frac{1}{2}$ satisfies all the three equations, but in general for an overdimensioned problem an 'exact' solution doesn't exist... Kind regards $\chi$ $\sigma$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Back
Top