MHB How to Solve a Geometric Sequence with Given Differences?

AI Thread Summary
To solve the geometric sequence problem, the differences between consecutive terms lead to a set of equations: a(1-r)=6, ar(1-r)=3, and ar^2(1-r)=3/2. With two unknowns, a and r, and three equations, the problem is overdetermined. A specific solution is found with a=12 and r=1/2, which satisfies all equations. However, in general, overdetermined problems may not have a unique solution.
rsyed5
Messages
5
Reaction score
0
I have no idea how to solve this equation, its in my homework... i know the formula to find the nth term(tn=ar^n-1) but don't know how to solve this:

The difference between the first term and second term in a geometric sequence is 6.The difference between the second term and the third term is 3. The difference between the third term and the fourth term is 3/2. Find the nth term in the sequence...

Thanks in advance:)
 
Mathematics news on Phys.org
We may state:

$$a-ar=6$$

$$ar-ar^2=3$$

We now have two equations and two unknowns. I suggest solving the first equation for $r$, then substitute into the second to get an equation in $a$ only, which you can then solve. Once you have determined the value of $a$, then use that in your expression for $r$ in terms of $a$ to get the value of $r$. Then use:

$$t_n=ar^{n-1}$$

for the $n$th term. :D
 
rsyed5 said:
I have no idea how to solve this equation, its in my homework... i know the formula to find the nth term(tn=ar^n-1) but don't know how to solve this:

The difference between the first term and second term in a geometric sequence is 6.The difference between the second term and the third term is 3. The difference between the third term and the fourth term is 3/2. Find the nth term in the sequence...

Thanks in advance:)

If the general term is $\displaystyle t_{n}= a\ r^{n-1}$ You have two unknown variables a and r and three equations...

$\displaystyle a\ (1-r)=6$

$\displaystyle a\ r\ (1-r)=3$

$\displaystyle a\ r^{2}\ (1-r)=\frac{3}{2}$

... so that the problem is overdimensioned. In this case the solution $\displaystyle a=12,\ r= \frac{1}{2}$ satisfies all the three equations, but in general for an overdimensioned problem an 'exact' solution doesn't exist... Kind regards $\chi$ $\sigma$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...

Similar threads

Back
Top