How to solve mass-spring system when affected by torque in a pulley?

AI Thread Summary
The discussion centers on solving a mass-spring system influenced by torque in a pulley, with an emphasis on the absence of friction between the rope and pulley. Participants clarify that a frictionless pulley implies no friction at the axle, not between the rope and pulley, which is essential for the pulley to turn. There is confusion regarding the correct formulation of torque, moment of inertia, and angular velocity, with participants debating the necessary units and terms in the equations. The conversation highlights the need to ensure the correct application of the torque equation, τ = Iα, and the importance of including all relevant terms in the calculations. Ultimately, the participants aim to derive a proper linear differential equation for the system.
bolzano95
Messages
89
Reaction score
7
Homework Statement
Write a differential equation for a mass-spring system.
Relevant Equations
F=ma
pulley.png

image1.png
 
Last edited:
Physics news on Phys.org
bolzano95 said:
There is no friction between the rope and pulley.
You don't mean that. A frictionless pulley means there is no friction at the axle.
If there were no friction between pulley and rope the pulley would not turn; the rope would just slide over it.

A few mistakes towards the end.
Torque = moment of inertia times.. what?
A factor of R seems to have disappeared somewhere.
 
haruspex said:
You don't mean that. A frictionless pulley means there is no friction at the axle.
If there were no friction between pulley and rope the pulley would not turn; the rope would just slide over it.

A few mistakes towards the end.
Torque = moment of inertia times.. what?
A factor of R seems to have disappeared somewhere.
Sorry, I meant the rope does not slip on the pulley.

I fixed the last equations and double checked the R-s. But I'm still confused by what you mean with
Torque = moment of inertia times ... what?
The torque in this case is given as a product of C and angular velocity, where C is a factor of dampening.

Screenshot 2021-04-27 at 12.39.24.png

Is this correct?
 
bolzano95 said:
The torque in this case is given as a product of C and angular velocity
Torque has dimension ##ML^2T^{-2}##. Moment of inertia is ##ML^2## and angular velocity is ##T^{-1}##. Multiplying those last two gives ##ML^2T^{-1}##, not torque.

bolzano95 said:
C is a factor of dampening.
There is no damping here (much less dampening - all is dry). The forces are all conservative.
 
I checked the torque and I agree there is something wrong, but unfortunately I have to use the given formula (it's mandatory). But I think that in the coefficient C are hidden necessary units.

I suppose that the goal of this problem is to write a homogeneous linear differential formula, but what I get is a nonhomogeneous one. So I just wanted to check if my solving process is correct.
 
bolzano95 said:
I have to use the given formula (it's mandatory)
Either you were given the wrong formula or you have misunderstood.
The equation is ##\tau=I\alpha##, torque equals moment of inertia times angular acceleration.
 
The statement “... there is a torque in the axis or rotation” suggests to me that the shown diagram does not correspond with the text of this problem.
 
Lnewqban said:
The statement “... there is a torque in the axis or rotation” suggests to me that the shown diagram does not correspond with the text of this problem.
Good point.
@bolzano95, does that statement correspond to a part of the problem statement that you have left out? I.e. your ##-C\omega## term is correct but your error is that you left out the ##-I\alpha## term from the torque difference?

I remain doubtful of that because axial friction should be ##-C\frac{\omega}{|\omega|}(T_1+T_2)##.

Edit: added tension factor above.
 
Last edited:
  • Like
Likes Lnewqban

Similar threads

Back
Top