MHB How to Solve the Radical Equation Using Fifth Root and Square Root?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
Click For Summary
To solve the radical equation frt{176 + 80sqrt{5}} = 1 + sqrt{5}, both sides are raised to the 5th power, resulting in 176 + 80sqrt{5} = (1 + sqrt{5})^5. The calculation of (1 + sqrt{5})^5 is broken down into steps, first finding (1 + sqrt{5})^2 = 6 + 2sqrt{5}, then squaring that result to get 56 + 24sqrt{5}, and finally multiplying by (1 + sqrt{5}) to arrive at 176 + 80sqrt{5}. An alternative method using the binomial theorem confirms that (1 + sqrt{5})^5 equals 176 + 80sqrt{5}. Thus, the equation is verified as correct.
mathdad
Messages
1,280
Reaction score
0
Let frt = fifth root

Let sqrt = square root

Show that frt{176 + 80sqrt{5}} = 1 + sqrt{5}

Do I raise both sides to the 5th power?

Can someone get me started?
 
Mathematics news on Phys.org
Yes. By raising both sides to the 5th power we get:
$$\left (\sqrt[5]{176+80\sqrt{5}}\right )^5=\left (1+\sqrt{5}\right )^5 \Rightarrow 176+80\sqrt{5}=\left (1+\sqrt{5}\right )^5$$

So, we have to calculate $\left (1+\sqrt{5}\right )^5$ and show that it is equal to $176+80\sqrt{5}$:

We have that $$\left (1+\sqrt{5}\right )^5=\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )$$

the first term is:
$$\left (1+\sqrt{5}\right )^2=1+2\cdot \sqrt{5}+5=6+2\sqrt{5}$$

The first two terms are:
$$\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2=\left (\left (1+\sqrt{5}\right )^2\right )^2=\left (6+2\sqrt{5}\right )^2=36+2\cdot 6\cdot 2\sqrt{5}+4\cdot 5=36+24\sqrt{5}+20 =56+24\sqrt{5}$$

The whole expression is:
\begin{align*}\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )&=\left (\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\right )\cdot \left (1+\sqrt{5}\right ) \\ & =\left (56+24\sqrt{5}\right )\cdot \left (1+\sqrt{5}\right ) \\ & =56+24\sqrt{5}+56\sqrt{5}+24\cdot 5 \\ & =56+80\sqrt{5}+120 \\ & =176+80\sqrt{5}\end{align*}
 
An alternate approach would be to use the binomial theorem:

$$(1+\sqrt{5})^5=\sum_{k=0}^{5}\left({5 \choose k}\sqrt{5}^k\right)$$

$$(1+\sqrt{5})^5=1+5\sqrt{5}+50+50\sqrt{5}+125+25\sqrt{5}=176+80\sqrt{5}$$

And so:

$$\sqrt[5]{176+80\sqrt{5}}=\sqrt[5]{(1+\sqrt{5})^5}=1+\sqrt{5}$$
 
mathmari said:
Yes. By raising both sides to the 5th power we get:
$$\left (\sqrt[5]{176+80\sqrt{5}}\right )^5=\left (1+\sqrt{5}\right )^5 \Rightarrow 176+80\sqrt{5}=\left (1+\sqrt{5}\right )^5$$

So, we have to calculate $\left (1+\sqrt{5}\right )^5$ and show that it is equal to $176+80\sqrt{5}$:

We have that $$\left (1+\sqrt{5}\right )^5=\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )$$

the first term is:
$$\left (1+\sqrt{5}\right )^2=1+2\cdot \sqrt{5}+5=6+2\sqrt{5}$$

The first two terms are:
$$\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2=\left (\left (1+\sqrt{5}\right )^2\right )^2=\left (6+2\sqrt{5}\right )^2=36+2\cdot 6\cdot 2\sqrt{5}+4\cdot 5=36+24\sqrt{5}+20 =56+24\sqrt{5}$$

The whole expression is:
\begin{align*}\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )&=\left (\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\right )\cdot \left (1+\sqrt{5}\right ) \\ & =\left (56+24\sqrt{5}\right )\cdot \left (1+\sqrt{5}\right ) \\ & =56+24\sqrt{5}+56\sqrt{5}+24\cdot 5 \\ & =56+80\sqrt{5}+120 \\ & =176+80\sqrt{5}\end{align*}

Thank you very much for providing such a detailed reply.

- - - Updated - - -

MarkFL said:
An alternate approach would be to use the binomial theorem:

$$(1+\sqrt{5})^5=\sum_{k=0}^{5}\left({5 \choose k}\sqrt{5}^k\right)$$

$$(1+\sqrt{5})^5=1+5\sqrt{5}+50+50\sqrt{5}+125+25\sqrt{5}=176+80\sqrt{5}$$

And so:

$$\sqrt[5]{176+80\sqrt{5}}=\sqrt[5]{(1+\sqrt{5})^5}=1+\sqrt{5}$$

Thanks a million. I had no idea that the binomial theorem is somehow connected here. I learn something new every time I visit this site.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 41 ·
2
Replies
41
Views
6K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 0 ·
Replies
0
Views
2K