MHB How to Solve the Radical Equation Using Fifth Root and Square Root?

  • Thread starter Thread starter mathdad
  • Start date Start date
  • Tags Tags
    Radical
mathdad
Messages
1,280
Reaction score
0
Let frt = fifth root

Let sqrt = square root

Show that frt{176 + 80sqrt{5}} = 1 + sqrt{5}

Do I raise both sides to the 5th power?

Can someone get me started?
 
Mathematics news on Phys.org
Yes. By raising both sides to the 5th power we get:
$$\left (\sqrt[5]{176+80\sqrt{5}}\right )^5=\left (1+\sqrt{5}\right )^5 \Rightarrow 176+80\sqrt{5}=\left (1+\sqrt{5}\right )^5$$

So, we have to calculate $\left (1+\sqrt{5}\right )^5$ and show that it is equal to $176+80\sqrt{5}$:

We have that $$\left (1+\sqrt{5}\right )^5=\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )$$

the first term is:
$$\left (1+\sqrt{5}\right )^2=1+2\cdot \sqrt{5}+5=6+2\sqrt{5}$$

The first two terms are:
$$\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2=\left (\left (1+\sqrt{5}\right )^2\right )^2=\left (6+2\sqrt{5}\right )^2=36+2\cdot 6\cdot 2\sqrt{5}+4\cdot 5=36+24\sqrt{5}+20 =56+24\sqrt{5}$$

The whole expression is:
\begin{align*}\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )&=\left (\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\right )\cdot \left (1+\sqrt{5}\right ) \\ & =\left (56+24\sqrt{5}\right )\cdot \left (1+\sqrt{5}\right ) \\ & =56+24\sqrt{5}+56\sqrt{5}+24\cdot 5 \\ & =56+80\sqrt{5}+120 \\ & =176+80\sqrt{5}\end{align*}
 
An alternate approach would be to use the binomial theorem:

$$(1+\sqrt{5})^5=\sum_{k=0}^{5}\left({5 \choose k}\sqrt{5}^k\right)$$

$$(1+\sqrt{5})^5=1+5\sqrt{5}+50+50\sqrt{5}+125+25\sqrt{5}=176+80\sqrt{5}$$

And so:

$$\sqrt[5]{176+80\sqrt{5}}=\sqrt[5]{(1+\sqrt{5})^5}=1+\sqrt{5}$$
 
mathmari said:
Yes. By raising both sides to the 5th power we get:
$$\left (\sqrt[5]{176+80\sqrt{5}}\right )^5=\left (1+\sqrt{5}\right )^5 \Rightarrow 176+80\sqrt{5}=\left (1+\sqrt{5}\right )^5$$

So, we have to calculate $\left (1+\sqrt{5}\right )^5$ and show that it is equal to $176+80\sqrt{5}$:

We have that $$\left (1+\sqrt{5}\right )^5=\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )$$

the first term is:
$$\left (1+\sqrt{5}\right )^2=1+2\cdot \sqrt{5}+5=6+2\sqrt{5}$$

The first two terms are:
$$\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2=\left (\left (1+\sqrt{5}\right )^2\right )^2=\left (6+2\sqrt{5}\right )^2=36+2\cdot 6\cdot 2\sqrt{5}+4\cdot 5=36+24\sqrt{5}+20 =56+24\sqrt{5}$$

The whole expression is:
\begin{align*}\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )&=\left (\left (1+\sqrt{5}\right )^2\cdot \left (1+\sqrt{5}\right )^2\right )\cdot \left (1+\sqrt{5}\right ) \\ & =\left (56+24\sqrt{5}\right )\cdot \left (1+\sqrt{5}\right ) \\ & =56+24\sqrt{5}+56\sqrt{5}+24\cdot 5 \\ & =56+80\sqrt{5}+120 \\ & =176+80\sqrt{5}\end{align*}

Thank you very much for providing such a detailed reply.

- - - Updated - - -

MarkFL said:
An alternate approach would be to use the binomial theorem:

$$(1+\sqrt{5})^5=\sum_{k=0}^{5}\left({5 \choose k}\sqrt{5}^k\right)$$

$$(1+\sqrt{5})^5=1+5\sqrt{5}+50+50\sqrt{5}+125+25\sqrt{5}=176+80\sqrt{5}$$

And so:

$$\sqrt[5]{176+80\sqrt{5}}=\sqrt[5]{(1+\sqrt{5})^5}=1+\sqrt{5}$$

Thanks a million. I had no idea that the binomial theorem is somehow connected here. I learn something new every time I visit this site.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top