How to treat spin orbit operator directly

hokhani
Messages
552
Reaction score
15
For an electron the spin operator S_zis represented by a 2×2 matrix, with spin up and down as its bases. Consider the angular momentum operator L_z with l=1 which is a 3×3 matrix. How can we treat the L_z S_z operator directly in matrix form?
 
Physics news on Phys.org
If with ##L_z S_z## you mean the total angular momentum ##J_z## than you have that ##J=L+S##, so ##j=l+s=\frac{3}{2}##. The eigenvalues of ##J_z## are ##m_j=-\frac{3}{2},-\frac{1}{2},\frac{1}{2},\frac{3}{2}## (##-j \le m_j \le j##). By choosing a basis where ##J^2## and ##J_z## are diagonal, your matrix operator of ##J_z## is:

##J_z = \hbar
\begin{pmatrix}
\frac{3}{2} & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & -\frac{1}{2} & 0 \\
0 & 0 & 0 & -\frac{3}{2}
\end{pmatrix}
##

P.S.: I'm studying this right now, so maybe i could probably make some mistakes
 
In non-relativistic physics (I guess that's all about non-relativistic quantum theory) spin and orbital angular momentum commute, and total angular momentum is given by
$$\vec{J}=\vec{L}+\vec{S}.$$
Then according to representation theory of the rotation group, if the orbital angular angular momentum has definite ##l## and spin ##s##, then the total angular momentum has ##j \in \{|l-s|,|l-s|+1,\ldots,l+s \}##, i.e., in your case you have ##j \in \{1/2,3/2 \}##.

Indeed the total-angular momentum space is ##(2l+1)(2s+1)##, i.e., in your case ##3 \cdot 2=6## dimensional. The possible values for ##j## imply the same dimension, i.e., ##2+4=6##.

For the eigenvalues of ##j_z=l_z+s_z##. You should look this up in a good textbook. Look for Clebsch-Gordan coefficients.
 
Thanks, but my question is how to multiply the two matrixes directly without solving the problem this way.
 
The usual way to get ##L S## is to use the identities
##J^2 = (L + S)^2 = L^2 + S^2 + 2LS##
##S## is a constant, so the result depends on ##L^2## and ##J^2##. With ##l=1## fixed, you can write out the basis states of ##j## in terms of the basis states of ##s##.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top