How to use geometrical interpretation to prove an inequality?

  • Thread starter Thread starter stanley.st
  • Start date Start date
  • Tags Tags
    Inequality Proof
stanley.st
Messages
30
Reaction score
0

Homework Statement


Prove that

\frac{1-h}{2}<\sum_{k=1}^{n}x_{2k}(x_{2k+1}-x_{2k-1})<\frac{1+h}{2}

where 0=x_1<x_2<\cdots<x_{2n+1}=1 such that x_{k+1}-x_{k}<h for 1\le k\le 2n

Homework Equations



How to prove? :-)

The Attempt at a Solution



I need to prove
\left|-1+2\sum_{k=1}^{n}x_{2k}(x_{2k+1}-x_{2k-1})\right|<h

\left|-1+2\sum_{k=1}^{n}x_{2k}(x_{2k+1}-x_{2k-1})\right|=\left|-1+2\sum_{k=1}^{n}x_{2k}(x_{2k+1}-x_{2k}+x_{2k}-x_{2k-1})\right|\le\left|-1+4h\sum_{k=1}^{n}x_{2k}\right|
 
Physics news on Phys.org
Draw a diagram. Each term in the sum corresponds to an approximation of the area under the graph in the interval (x_{2k-1},x_{2k+1}). For each interval, find the difference between
[the approximation] and [the exact value for the area under the graph in the interval (x_{2k-1},x_{2k+1})]Add up the differences and you will get your result.
 
Last edited:
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top