off-diagonal
- 29
- 0
The metric on S^2 is given by,
\displaystyle ds^2=d\theta^2 + sin^2\theta d\phi^2
Here's the answer
\displaystyle \xi ^{\mu}_{(1)}\partial _{\mu} = \partial_{\phi}
\displaystyle \xi^{\mu}_{(2)}\partial_{\mu} = \ -(cos\phi \partial_{\theta} - cot\theta sin\phi \partial_{\phi})
\displaystyle \xi^{\mu}_{(3)}\partial_{\mu} = sin\phi \partial_{\theta} + cot\theta cos\phi \partial_{\phi}
from Black Hole Physics: Basic Concepts and New Development by Frolov & Novikov
Appendix B
Anyone can explain me how to compute this 3 Killing vector?
\displaystyle ds^2=d\theta^2 + sin^2\theta d\phi^2
Here's the answer
\displaystyle \xi ^{\mu}_{(1)}\partial _{\mu} = \partial_{\phi}
\displaystyle \xi^{\mu}_{(2)}\partial_{\mu} = \ -(cos\phi \partial_{\theta} - cot\theta sin\phi \partial_{\phi})
\displaystyle \xi^{\mu}_{(3)}\partial_{\mu} = sin\phi \partial_{\theta} + cot\theta cos\phi \partial_{\phi}
from Black Hole Physics: Basic Concepts and New Development by Frolov & Novikov
Appendix B
Anyone can explain me how to compute this 3 Killing vector?