How would I solve this using Laplace transformation?

  • Context: Engineering 
  • Thread starter Thread starter arhzz
  • Start date Start date
  • Tags Tags
    Laplace Transformation
Click For Summary

Discussion Overview

The discussion revolves around determining the parameter A in the transfer function H(s) so that the impulse response h(t) contains components of the form te^{at}σ(t). Participants are exploring the use of Laplace transformations and techniques such as partial fraction decomposition and completing the square to analyze the transfer function.

Discussion Character

  • Exploratory
  • Technical explanation
  • Homework-related

Main Points Raised

  • Some participants propose using the inverse Laplace transformation to revert H(s) into h(t) to analyze the impulse response.
  • There is a suggestion that partial fraction decomposition is necessary to apply standard Laplace transformations, but challenges arise in finding the zeros of the denominator.
  • One participant mentions completing the square in the denominator as a potential key step in simplifying the transfer function.
  • Another participant confirms the result of completing the square and suggests that setting A = 2 or A = 6 could simplify the denominator to achieve the desired form.
  • A question is raised regarding the significance of the term te^{at} compared to just e^{at} in the context of the impulse response.

Areas of Agreement / Disagreement

Participants generally agree on the approach of completing the square and the potential values for A, but there is no consensus on the implications of these values or the next steps in the analysis.

Contextual Notes

Participants express uncertainty about the decomposition process and the implications of the values of A on the form of the impulse response. There are unresolved mathematical steps regarding the simplification of the denominator and the application of the inverse Laplace transformation.

arhzz
Messages
284
Reaction score
58
Homework Statement
A transfer function is given how A must be chosen so that the impulse response associated with H has components with te^{at}\sigma(t)
Relevant Equations
Laplace Transoformation
Hello!

Consider this transferfunction H(s);

$$ H(s) =\frac{s-1}{1-2(s^2-s)-As-\frac{A}{2}} $$

Now I need to determine A (note that A is coming from R) so that the impulse response h(t) (so in time domain) so that it contains components with $$te^{at} \sigma(t) $$.

Now I honestly really have no idea how to solve this.We are susposed to use the Laplace Transformation,so I tried a few things but it got me nowhere to be honest.

What I tried is; since the transferfunction is given in the frequency domain (s) and we need the impulse response in time domain (t) I was thinking of reverting the H(s) into h(t) (Inverse Laplace transformation) and then seeing what would that bring me; But the problem is how can I revert the function in the time domain? For that I need partial fraction decomposition,to get it in a form where I could use the standard Laplace Transformations (the one that are given on a sheet,the most common ones). And I can't do the decomposition when I can't find the zeros of the denominator.

I tried using the integral of the inverse Laplace transformation and it didnt bring me very far.Any insight would be great;

Also the solution should be ;

A = 2 and A = 6

Thanks
 
Physics news on Phys.org
arhzz said:
Homework Statement:: A transfer function is given how A must be chosen so that the impulse response associated with H has components with te^{at}\sigma(t)
Relevant Equations:: Laplace Transoformation

Hello!

Consider this transferfunction H(s);

$$ H(s) =\frac{s-1}{1-2(s^2-s)-As-\frac{A}{2}} $$

Now I need to determine A (note that A is coming from R) so that the impulse response h(t) (so in time domain) so that it contains components with $$te^{at} \sigma(t) $$.

Now I honestly really have no idea how to solve this.We are susposed to use the Laplace Transformation,so I tried a few things but it got me nowhere to be honest.

What I tried is; since the transferfunction is given in the frequency domain (s) and we need the impulse response in time domain (t) I was thinking of reverting the H(s) into h(t) (Inverse Laplace transformation) and then seeing what would that bring me; But the problem is how can I revert the function in the time domain? For that I need partial fraction decomposition,to get it in a form where I could use the standard Laplace Transformations (the one that are given on a sheet,the most common ones). And I can't do the decomposition when I can't find the zeros of the denominator.

I tried using the integral of the inverse Laplace transformation and it didnt bring me very far.Any insight would be great;

Also the solution should be ;

A = 2 and A = 6

Thanks
For this transfer function, ## H(s) =\frac{s-1}{1-2(s^2-s)-As-\frac{A}{2}}##, I believe the key is to complete the square in the denominator.

If I haven't made any errors, what I get for the denominator is ##-2[s + \frac 1 2(A/2 - 1)]^2 + \frac 1 8(A - 6)(A - 2)##
 
Mark44 said:
For this transfer function, ## H(s) =\frac{s-1}{1-2(s^2-s)-As-\frac{A}{2}}##, I believe the key is to complete the square in the denominator.

If I haven't made any errors, what I get for the denominator is ##-2[s + \frac 1 2(A/2 - 1)]^2 + \frac 1 8(A - 6)(A - 2)##
Ohhh okay,completing the square...Didnt really think about that.I get the same result,and if I am not mistaken,the next step would be taking A = 6 and A = 2 so that the right fraction becomes 0,and from that should give me the form which I want ( the one I mentioned in my #1 post)

Think that should be about it right?
 
Did you understand the significance of ##te^{at}##, as opposed to say just ##e^{at}##?
 
arhzz said:
Ohhh okay,completing the square...Didnt really think about that.
Keep that in mind, since that's a technique that can be used a lot in finding the inverse Laplace transform.

arhzz said:
I get the same result,and if I am not mistaken,the next step would be taking A = 6 and A = 2
If A = 2, the denominator simplifies to ##-2s^2##. See what you get when A = 6.
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K