I think I am going to use series 2000 motors model 105-1002-006. These are wheel motors. We are going to build them into the a-arms and trailing arms, and get rid of the axles altogether. They have a max pressure of 4500psi, so should be better overall in performance. There going to cost more, but I think its worth it.
I have been doing a bit of thinking on our circuit. The idea of a high speed circuit seems to be making less sense to me. Even in the 4 wheel drive mode, the speed is simply going to be limited by the rpm limit of the motor I think. So dumping more flow to just the backs really isn't going to do anything is it? The pump is capable of producing enough flow to drive all 4 motors to their max rpm right? If that is true, then it seems there is no point in the circuit.
I am also theorizing a little here, but if all 4 motors were simply put in parallel, with no flow dividers, the fear was that in low traction only 1 motor might be spinning. Here is my question. If the pump is trying to push 80gpm into just 1 motor, and that motor is only good for about 20gpm, what is going to happen to the rest of the flow? I understand that there is a relief in the motor, but wouldn't some of that flow want to go to the other motors before being forced through the releif port. Would this naturally give us a limited slip effect?
Let me know what your thoughts are on this. I am realizing how much these rotory flow dividers are going to cost that can handle the flow we need, plus on top of that all the valves and the custom manifold. I haven't come up with an estimated cost for all this yet, but it is looking like several thousand dollars, and I am just wondering if it is worth it. Part of me is thinking let's just hook it up in parallel, and see what happens, then adjust from there.
What do you think?