ViktorVask
- 7
- 0
I will try to do it by integrating too. I realized now that I really made a simple mistake and the resultant force is what you found. But now I am a little bit confused, the total force does not depend of 𝜌2 . Isnt that weird ? What should the answer for 𝜌2 be ?Chestermiller said:Correct me if I am wrong. I integrated the vertical component of the pressure forces over the surfaces of the cube. On the portion immersed in fluid 2, I got a downward force of ##\frac{\rho_2 ga^3}{2}## and, on the portion immersed in fluid 1, I got an upward force of ##\frac{\rho_2 ga^3}{2}+\frac{\rho_1ga^3}{8}##, so the net fluid pressure force on the cube was upward, and equal to ##\frac{\rho_1ga^3}{8}##, independent of ##\rho_2##. I got the exact same result by calculating the upward force on the base of the stack, and subtracting the weights of the 4 triangular fluid wedges above.