Hypergeometic function. Questions.

  • Thread starter Thread starter LagrangeEuler
  • Start date Start date
  • Tags Tags
    Function
LagrangeEuler
Messages
711
Reaction score
22
Legendre polynomial is defined as
##P_n(x)=_2F_1(-n,n+1;1,\frac{1-x}{2}) ##
Pochammer symbols are defined as ##(a)_n=\frac{\Gamma(a+n)}{\Gamma(a)}##. If I undestand well
P_n(x)=_2F_1(-n,n+1;1,\frac{1-x}{2}) =\sum^{\infty}_{k=0}\frac{(-n)_k(n+1)_k}{(1)_kk!}x^k
I am not sure what happens with
(-n)_k=\frac{\Gamma(-n+k)}{\Gamma(-n)}
because ##\Gamma## diverge for negative integers.
 
Physics news on Phys.org
Even though ## \Gamma ## diverges for negative integers, the ratio of gamma functions evaluated at different integer arguments does not necessarily diverge. First, note that ## \Gamma(n) = (n-1)! ##. Now write out the terms as follows:

## \frac{\Gamma(-n+k)}{\Gamma(-n)} = \frac{(k-n-1)!}{(-n-1)!} = \frac{(k-n-1)(k-n-2)\cdots (k-n-(k-1))(k-n-k)(k-n-(k+1))\cdots }{(-n-1)(-n-2)(-n-3)\cdots}.##

Therefore, we have

## \frac{\Gamma(-n+k)}{\Gamma(-n)} = \frac{(k-n-1)(k-n-2)\cdots (-n+1)(-n)(-n-1)\cdots }{(-n-1)(-n-2)(-n-3)\cdots} = (k-n-1)(k-n-2)\cdots(-n+1)(-n)##,

and this last result is finite.
 
Back
Top