Rund and Lovelock ("Tensors, Differential Forms, and Variational Principles") have a good section on this in chapter 4
I hope you are familiar with Levi-Civita pseudo-tensors (
https://en.wikipedia.org/wiki/Levi-Civita_symbol)
The determinant of the n-by-n matrix ##g_{\alpha\beta}## is given by:
##g = \epsilon^{\mu_1,\dots,\mu_n}g_{1\mu_1}\dots g_{n\mu_n}##
Now consider the following object:
##\omega^{\alpha\beta}=\sum_s\delta^\beta_s \epsilon^{\mu_1,\dots,\mu_{s-1},\alpha,\mu_{s+1},\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}g_{s+1,\mu_{s+1}}\dots g_{n\mu_n}##
##g_{\kappa,\alpha}\omega^{\alpha\beta}=\sum_s \delta^\beta_s \epsilon^{\mu_1,\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}\: g_{\kappa,\mu_s} \:g_{s+1,\mu_{s+1}}\dots g_{n\mu_n}##
Due to anti-symmetry of Levi-Civita, the only non-zero term in the ##\sum_s## is the one with ##s=\kappa##, but thet term is only non-zero if ##s=\beta=\kappa##. Now if all of this works, then we get the earlier expression for the determinant, so:
##g_{\kappa,\alpha}\omega^{\alpha\beta}=g\delta^\beta_\kappa##
So ##\omega^{\alpha\beta}=g g^{\alpha\beta}##, the inverse times the determinant. The co-factor matrix is here somewhere, but you don't need it to proceed. Note that from the above definition of the determinant
##\partial_c g = \partial_c g_{\beta \alpha}\sum_s\delta^\beta_s \epsilon^{\mu_1,\dots,\mu_{s-1},\alpha,\mu_{s+1},\dots,\mu_n}g_{1\mu_1}\dots g_{s-1,\mu_{s-1}}g_{s+1,\mu_{s+1}}\dots g_{n\mu_n} = g g^{\beta\alpha} \partial_c g_{\alpha\beta}##
Which is what you were after (once we use ##g_{\alpha\beta}=g_{\beta\alpha}##)