If b | a(n-a) can one say b | n

  • Thread starter Thread starter icantadd
  • Start date Start date
icantadd
Messages
109
Reaction score
0

Homework Statement



Suppose b | a!(n-a)! and prove that b | n!

Homework Equations



m | n <=> n = am

The Attempt at a Solution



b | a!(n-a)! ,so that
a!(n-a)! = bs, so that
a!(n-a)!(nCa) = bs(nCa) (nCa is a combinations of n items)
n! = bs(nCa)
And so b is obviously a divisor of n!
 
Physics news on Phys.org
We can show a!b! divides (a+b)!

WLOG assume a > b,

First, make the following observation,

\frac{(a+b)!}{a!b!} = \frac{(a+b)(a+b-1) \ldots (b+1) b!}{a!b!} = \frac{(a+b)(a+b-1) \ldots (b+1)}{a!}

Now, by induction on b, if b=1,
(a+b)! = (a+1)! = (a+1)a! = (a+1)a!b!
So by definition we have that a!b! divides (a+b)!

So assume the result holds for b, and we will show the result holds for b+1. Now, consider,

\frac{(a+b+1)!}{a!(b+1)!} = \frac{(a+b+1)(a+b)(a+b-1) \ldots (b+1)!}{a!(b+1)!} <br />


Next, we will be a bit tricky by bracketing things off right.


\frac{(a+b+1)(a+b)(a+b-1) \ldots (b+1)b!}{(b+1)!a!} = \frac{(a+b+1)b!(a+b)(a+b-1) \ldots (b+1)}{(b+1)!a!}

Now, it suffices to show the above is an integer. First let's consider what our inductive hypothesis tells us. It says that a! divides (a+b)(a+b-1) ... (b+1). So there is some integer d such that,

\frac{(a+b)(a+b-1) \ldots (b+1)}{a!} = d

Now we have to show the following is an integer,but

\frac{(a+b+1)b!}{(b+1)!} = \frac{(a + (b+1))b!}{(b+1)!} = \frac{ab! + (b+1)!}{(b+1)!}

Err, ?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top