MHB If c|ab and gcd(b, c) = 1 why does c|ac?

  • Thread starter Thread starter MI5
  • Start date Start date
AI Thread Summary
If c divides ab and the greatest common divisor of b and c is 1, then it follows that c divides a. The proof relies on the relationship between the products ab and ac, demonstrating that since c divides ab, it must also divide ac. The discussion highlights some confusion regarding the definition of the divisibility relation. Clarification is sought on the concept of divisibility, indicating a need for a deeper understanding of the theorem. Overall, the theorem is affirmed, emphasizing the importance of grasping the foundational definitions in number theory.
MI5
Messages
8
Reaction score
0
Theorem: If c|ab and (b, c) = 1 then c|a.

Proof: Consider (ab, ac) = a(b, c) = a. We have c|ab and clearly c|ac so c|a. It's not so clear to me why c|ac. Perhaps I'm missing something really obvious.
 
Mathematics news on Phys.org
MI5 said:
It's not so clear to me why c|ac.
This is because ac = a * c, i.e., by the definition of the | (divides) relation.
 
Evgeny.Makarov said:
This is because ac = a * c, i.e., by the definition of the | (divides) relation.
I still don't understand I'm afraid. Could you say bit more please?
 
MI5 said:
I still don't understand I'm afraid. Could you say bit more please?
I need to be sure you know the definition of the relation denoted by |. Could you write this definition?
 
WOW! All I can say is thanks. (Giggle)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top