There's what I have so far.(adsbygoogle = window.adsbygoogle || []).push({});

We assume that P(A) ⊆ P(B). This means that every element x that exists in P(A), also exits in P(B). By definition of a power set, x∈P(A) if x ⊆ A. Therefore, A∈P(A). Since P(A) ⊆ P(B), A∈P(B), meaning all x ⊆ A, x ∈ P(B). Furthermore, B∈P(B), meaning all x ⊆ B, x ∈ P(B). Since x ⊆ A and x ⊆ B and P(A) ⊆ P(B), A ⊆ B.

Is my proof correct?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# If P(A) ⊆ P(B) then A ⊆ B

**Physics Forums | Science Articles, Homework Help, Discussion**