process91
- 105
- 0
If I wanted to integrate \int \sqrt{1+x^2} dx, I would let x=\tan\theta , which implies dx=\sec^2 \theta dx so that I would have:
\int \sqrt{1+x^2} dx = \int \sqrt{1 + \tan^2 \theta} \sec \theta d \theta = \int \sqrt{\sec^2 \theta}\sec^2\theta d\theta = \int \sec^3 \theta d \theta
It is this last equality that I am questioning. Why is it not \int |\sec \theta| \sec^2 \theta d \theta?
\int \sqrt{1+x^2} dx = \int \sqrt{1 + \tan^2 \theta} \sec \theta d \theta = \int \sqrt{\sec^2 \theta}\sec^2\theta d\theta = \int \sec^3 \theta d \theta
It is this last equality that I am questioning. Why is it not \int |\sec \theta| \sec^2 \theta d \theta?