wayneckm
- 66
- 0
Hello all,
I am wondering the implication between almost everywhere bounded function and Lebesgue integrable.
In the theory of Lebesgue integration, if a non-negative function f is bounded a.e., then it should be Lebesgue integrable, i.e. \int f d\mu < \infty because we do not take into account the unboundedness of f in a null set when approximate by sequence of simple function, am I correct? So this means a.e. boundedness implies Lebesgue integrable?
And seems there is a counterexample on the reverse implication, http://planetmath.org/encyclopedia/AnIntegrableFunctionWhichDoesNotTendToZero.html , so that means Lebesgue integrable does not imply bounded a.e.
So is this because in finding the Lebesgue integral, it is indeed an infinite series of products, which is \sum s_{n} \cdot \mu(A_{n}), so as long as the increase in s_{n} is not faster than the decrease in \mu(A_{n}), it is possible to have a finite value of this infinite sum? So in this way we may end up with a non-bounded a.e. function but Lebesgue integrable?
Wayne
I am wondering the implication between almost everywhere bounded function and Lebesgue integrable.
In the theory of Lebesgue integration, if a non-negative function f is bounded a.e., then it should be Lebesgue integrable, i.e. \int f d\mu < \infty because we do not take into account the unboundedness of f in a null set when approximate by sequence of simple function, am I correct? So this means a.e. boundedness implies Lebesgue integrable?
And seems there is a counterexample on the reverse implication, http://planetmath.org/encyclopedia/AnIntegrableFunctionWhichDoesNotTendToZero.html , so that means Lebesgue integrable does not imply bounded a.e.
So is this because in finding the Lebesgue integral, it is indeed an infinite series of products, which is \sum s_{n} \cdot \mu(A_{n}), so as long as the increase in s_{n} is not faster than the decrease in \mu(A_{n}), it is possible to have a finite value of this infinite sum? So in this way we may end up with a non-bounded a.e. function but Lebesgue integrable?
Wayne
Last edited by a moderator: