Implicit Differentiation Problem

Click For Summary
The discussion focuses on solving an implicit differentiation problem involving the curve defined by the equation X^2 + 4y^2 = 7 + 3xy. The derivative dy/dx is correctly found to be (3y - 2x) / (8y - 3x). A point P with an x-coordinate of 3 is identified, yielding a y-coordinate of 2, making the point P (3, 2). The second derivative at point P is calculated as -2/7, indicating that the curve has a local maximum at this point since the slope is decreasing and transitions from positive to negative. The overall shape of the graph is described as resembling a slanted ellipse.
Vigo
Messages
21
Reaction score
0
Consider the curve given by X^2+4y^2=7+3xy
a) show that dy/dx=3y-2x/8y-3x
b) show that there is a point P with x-cooridnate 3 at which the line tangent to the curve at P is horizontal. Find the y-cooridnate of P.
c)find the value of d^2y/dx^2 at the point P found in part (b). Does the curve have a local maximum, a local minimum, or neither at the point P? Justify your answer.

(a) is easy. All you do is find the derivative.

For (b), I got the point (3,2) by plugging 3 into the original equation and got 2.

For (c), the value I got was -2/7 by finding the second derivative and plugging (3,2) for the x's and y's. I need to know if this is right and if there are any max's or min's at this point. Thanks.
 
Physics news on Phys.org
-2/7 is correct. You know that dy/dx is 0 at the point, so you know it has to be either a maximum, a minimum, or a saddle point. Intuitively what do you think it should be, given that d^2y/dx^2 is less than 0? If it is less than 0 it means that the slope is decreasing--the slope is changing to become more negative. What would that mean in terms of maximum or minimum?
 
Slope of dy/dx is decreasing and is 0 at x= 3. That is, dy/dx is positive for x< 3 and negative for x> 3. y itself is increasing for x< 3, and decreasing for x>3. What does that tell you?
 
Since y is increasing when x<3 and decreasing when x>3, does that mean there is a local maximum?
 
Yes. Draw a picture of that situation.
 
Alright, thanks a lot for all of your help. I believe this graph looks like a slanted ellipse.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 24 ·
Replies
24
Views
2K
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
4K
Replies
10
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K