MHB Improper complex integrals--residue

  • Thread starter Thread starter Dustinsfl
  • Start date Start date
  • Tags Tags
    Complex
Dustinsfl
Messages
2,217
Reaction score
5
Given this:
$$
\int_0^{\infty}\frac{x^2}{x^6 + 1}dx = \frac{\pi}{6}
$$
Can I do this:
$$
\int_0^{\infty}\frac{x^2}{x^6 + 1}dx = \frac{1}{2}\int_{-\infty}^{\infty}\frac{x^2}{x^6 + 1}dx
$$
and solve the integral like this
$$
\int_{-\infty}^{\infty}\frac{x^2}{x^4 + 1}dx = 2i\pi\sum_{z \ \text{upper half}}\text{Res}_{z}f = \frac{\pi\sqrt{2}}{2}
$$
 
Physics news on Phys.org
dwsmith said:
Given this:
$$
\int_0^{\infty}\frac{x^2}{x^6 + 1}dx = \frac{\pi}{6}
$$
Can I do this:
$$
\int_0^{\infty}\frac{x^2}{x^6 + 1}dx = \frac{1}{2}\int_{-\infty}^{\infty}\frac{x^2}{x^6 + 1}dx
$$
Yes because the integral is convergent and you're using the way back of the even function when having a symmetric interval.
I never learned well about computing integrals by using complex analysis methods so I'll let another one which may confirm your procedure.
 
Krizalid said:
Yes because the integral is convergent and you're using the way back of the even function when having a symmetric interval.
I never learned well about computing integrals by using complex analysis methods so I'll let another one which may confirm your procedure.

It works because it is an even function. I actually just shown the integral is pi/6
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 29 ·
Replies
29
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
471
  • · Replies 24 ·
Replies
24
Views
5K
  • · Replies 4 ·
Replies
4
Views
4K