MHB Improper integral (ThinleyDs question at Yahoo Answers)

Click For Summary
The integral of exp(-b(x-a)^2) from -infinity to +infinity converges only if b is greater than zero. By substituting t = √b(x-a), the integral simplifies to a form involving Euler's integral. The calculation shows that the integral evaluates to √(π/b). This result is derived using the properties of the gamma function, specifically Γ(1/2). The final answer is that the integral equals √(π/b).
Mathematics news on Phys.org
Hello ThinleyD,

Necessarily $b>0$, otherwise the integral is divergent. Using the substitution $t=\sqrt{b}(x-a)$: $$\int_{-\infty}^{+\infty}e^{-b(x-a)^2}\;dx=\frac{1}{\sqrt{b}}\int_{-\infty}^{+\infty}e^{-t^2}\;dt=\frac{2}{\sqrt{b}}\int_{0}^{+\infty}e^{-t^2}\;dt$$ We get the well known Euler's integral. Using $u=t^2$: $$\int_{0}^{+\infty}e^{-t^2}\;dt=\int_{0}^{ + \infty} e^{-u}\frac{du}{2\sqrt{u}}=\frac{1}{2}\int_{0}^{ +\infty}e^{-u}u^{-\frac{1}{2}}\;du=\frac{1}{2}\Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}$$ As a consequence: $$\boxed{\displaystyle\int_{-\infty}^{+\infty}e^{-b(x-a)^2}\;dx=\sqrt{\frac{\pi}{b}}}$$
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
10
Views
2K