MHB Improper integral (ThinleyDs question at Yahoo Answers)

AI Thread Summary
The integral of exp(-b(x-a)^2) from -infinity to +infinity converges only if b is greater than zero. By substituting t = √b(x-a), the integral simplifies to a form involving Euler's integral. The calculation shows that the integral evaluates to √(π/b). This result is derived using the properties of the gamma function, specifically Γ(1/2). The final answer is that the integral equals √(π/b).
Mathematics news on Phys.org
Hello ThinleyD,

Necessarily $b>0$, otherwise the integral is divergent. Using the substitution $t=\sqrt{b}(x-a)$: $$\int_{-\infty}^{+\infty}e^{-b(x-a)^2}\;dx=\frac{1}{\sqrt{b}}\int_{-\infty}^{+\infty}e^{-t^2}\;dt=\frac{2}{\sqrt{b}}\int_{0}^{+\infty}e^{-t^2}\;dt$$ We get the well known Euler's integral. Using $u=t^2$: $$\int_{0}^{+\infty}e^{-t^2}\;dt=\int_{0}^{ + \infty} e^{-u}\frac{du}{2\sqrt{u}}=\frac{1}{2}\int_{0}^{ +\infty}e^{-u}u^{-\frac{1}{2}}\;du=\frac{1}{2}\Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}$$ As a consequence: $$\boxed{\displaystyle\int_{-\infty}^{+\infty}e^{-b(x-a)^2}\;dx=\sqrt{\frac{\pi}{b}}}$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Back
Top