MHB Improper integral (ThinleyDs question at Yahoo Answers)

Click For Summary
The integral of exp(-b(x-a)^2) from -infinity to +infinity converges only if b is greater than zero. By substituting t = √b(x-a), the integral simplifies to a form involving Euler's integral. The calculation shows that the integral evaluates to √(π/b). This result is derived using the properties of the gamma function, specifically Γ(1/2). The final answer is that the integral equals √(π/b).
Mathematics news on Phys.org
Hello ThinleyD,

Necessarily $b>0$, otherwise the integral is divergent. Using the substitution $t=\sqrt{b}(x-a)$: $$\int_{-\infty}^{+\infty}e^{-b(x-a)^2}\;dx=\frac{1}{\sqrt{b}}\int_{-\infty}^{+\infty}e^{-t^2}\;dt=\frac{2}{\sqrt{b}}\int_{0}^{+\infty}e^{-t^2}\;dt$$ We get the well known Euler's integral. Using $u=t^2$: $$\int_{0}^{+\infty}e^{-t^2}\;dt=\int_{0}^{ + \infty} e^{-u}\frac{du}{2\sqrt{u}}=\frac{1}{2}\int_{0}^{ +\infty}e^{-u}u^{-\frac{1}{2}}\;du=\frac{1}{2}\Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}$$ As a consequence: $$\boxed{\displaystyle\int_{-\infty}^{+\infty}e^{-b(x-a)^2}\;dx=\sqrt{\frac{\pi}{b}}}$$