Improper integral (ThinleyDs question at Yahoo Answers)

Click For Summary
SUMMARY

The discussion centers on the evaluation of the improper integral of the function exp(-b(x-a)^2) from -infinity to +infinity. It is established that for the integral to converge, the condition b > 0 must be satisfied. By applying the substitution t = √b(x-a), the integral simplifies to a form involving Euler's integral, ultimately yielding the result ∫_{-∞}^{+∞} e^{-b(x-a)^2} dx = √(π/b).

PREREQUISITES
  • Understanding of improper integrals
  • Familiarity with substitution methods in integration
  • Knowledge of Euler's integral and the Gamma function
  • Basic concepts of limits and convergence in calculus
NEXT STEPS
  • Study the properties of the Gamma function, particularly Γ(1/2).
  • Explore advanced techniques in evaluating improper integrals.
  • Learn about the applications of Gaussian integrals in probability theory.
  • Investigate the implications of convergence criteria in integral calculus.
USEFUL FOR

Mathematicians, calculus students, and anyone interested in advanced integration techniques and the properties of exponential functions.

Physics news on Phys.org
Hello ThinleyD,

Necessarily $b>0$, otherwise the integral is divergent. Using the substitution $t=\sqrt{b}(x-a)$: $$\int_{-\infty}^{+\infty}e^{-b(x-a)^2}\;dx=\frac{1}{\sqrt{b}}\int_{-\infty}^{+\infty}e^{-t^2}\;dt=\frac{2}{\sqrt{b}}\int_{0}^{+\infty}e^{-t^2}\;dt$$ We get the well known Euler's integral. Using $u=t^2$: $$\int_{0}^{+\infty}e^{-t^2}\;dt=\int_{0}^{ + \infty} e^{-u}\frac{du}{2\sqrt{u}}=\frac{1}{2}\int_{0}^{ +\infty}e^{-u}u^{-\frac{1}{2}}\;du=\frac{1}{2}\Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}$$ As a consequence: $$\boxed{\displaystyle\int_{-\infty}^{+\infty}e^{-b(x-a)^2}\;dx=\sqrt{\frac{\pi}{b}}}$$
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K