Improving Math Rigour - Tips & Advice

  • Thread starter Thread starter cdux
  • Start date Start date
  • Tags Tags
    Mathematical
AI Thread Summary
Improving mathematical rigor involves understanding the fundamentals of proofs, including concepts like implications and contradictions. It's essential to emulate the proof styles demonstrated in class and to practice by working ahead in textbooks, copying down proofs, and attempting to recreate them independently. Engaging with rigorous mathematics textbooks can help clarify the necessity of each step in a proof, while specific resources on proofs can provide structured guidance. Feedback from professors can indicate gaps in arguments, suggesting the need for more thorough justifications in reasoning. When faced with assertions, seeking rigorous proofs can also enhance understanding and discipline in mathematical reasoning.
cdux
Messages
187
Reaction score
0
I was told I lack mathematical rigour. But how do I go on improving on it? Is it only a matter of being very careful? Do I have to always support everything with a clear Euclidean succession of logical steps? Is it only a matter of 'believing' in the validity of the supporting tools? Then it's an oxymoron that while some people consider rigorous to firmly step on past tools, they mainly do it via respect to the mathematicians that invented them, rather than on a clear understanding of them.

Concerning my personal case, I think I don't lack knowledge so much on the process but rather on discipline. e.g. I was taught from a very young age the elegance of Geometrical axioms leading to a whole science but when it gets to other concepts, my mind usually flies to places that should really have a more solid basis behind them before going there.
 
Physics news on Phys.org
Depends who's telling you this. It means different things if it comes from your chemistry professor or your math professor.
I'll assume you mean your math professor. First, understand the fundamentals of proofs: implications, contradictions, necessity/sufficiency, etc. Watch carefully how the results are proven in class and emulate the style in your exercises. What helped me was to do is to work ahead in the textbook and [thoughtfully] copy down the proofs that will be presented the next day. Once you feel like you grasp the material, go back to the theorem, cover up the proof, and try to prove it on your own.
 
As stated by hsetennis it absolutely depends where this is coming from. If it is from a math professor (as I will from here on in assume it is), then it means you have to work on justifying your arguments mathematically i.e; proofs. There are many ways you can learn about this. One is by reading through the introduction sections of elementary rigorous mathematics textbooks (like analysis, set theory, algebra and so on), and in specific going through the proofs offered by the textbooks and trying to figure out what each step means and why is it necessary. These books usually offer practice questions also where you can practice your own proofs. Another option is to read a book specifically on proofs such as "How to prove it: A structural approach"- which has been mentioned on here several times. Your professor probably means that there are "holes" in your arguments. That is, you aren't including all the necessary steps and jumping from one step to the next without proper justification.
 
cdux said:
I was told I lack mathematical rigour.

Next time you are told ask for a rigorous proof of the assertion.
 
After a year of thought, I decided to adjust my ratio for applying the US/EU(+UK) schools. I mostly focused on the US schools before, but things are getting complex and I found out that Europe is also a good place to study. I found some institutes that have professors with similar interests. But gaining the information is much harder than US schools (like you have to contact professors in advance etc). For your information, I have B.S. in engineering (low GPA: 3.2/4.0) in Asia - one SCI...
I graduated with a BSc in Physics in 2020. Since there were limited opportunities in my country (mostly teaching), I decided to improve my programming skills and began working in IT, first as a software engineer and later as a quality assurance engineer, where I’ve now spent about 3 years. While this career path has provided financial stability, I’ve realized that my excitement and passion aren’t really there, unlike what I felt when studying or doing research in physics. Working in IT...
Bit Britain-specific but I was wondering, what's the best path to take for A-Levels out of the following (I know Y10 seems a bit early to be thinking about A-levels, but my choice will impact what I do this year/ in y11) I (almost) definitely want to do physics at University - so keep that in mind... The subjects that I'm almost definitely going to take are Maths, Further Maths and Physics, and I'm taking a fast track programme which means that I'll be taking AS computer science at the end...
Back
Top