Impulse integration for a Tennis Racket hitting a Tennis Ball

Click For Summary

Homework Help Overview

The discussion revolves around the integration of impulse in the context of a tennis racket hitting a tennis ball. Participants are examining the reasoning behind integrating impulse with respect to time rather than using impulse values at specific points.

Discussion Character

  • Conceptual clarification, Assumption checking

Approaches and Questions Raised

  • Participants question the rationale for integrating impulse over time, specifically why the integration bounds are set from ##t_i## to ##t_f## instead of using impulse values directly. There is a focus on understanding the relationship between impulse and time, with some suggesting that impulse can be viewed as a function of time.

Discussion Status

The discussion is active, with participants exploring different interpretations of impulse and its integration. Some guidance has been offered regarding the treatment of impulse as a function of time, which appears to clarify the original poster's confusion.

Contextual Notes

There is an emphasis on the proper notation and understanding of integration bounds, with some participants noting that omitting certain variables may lead to confusion. The conversation reflects a mix of assumptions and interpretations regarding the integration process in this context.

member 731016
Homework Statement
Please see below
Relevant Equations
Please see below
For this,
1684125887202.png

Can someone please tell me why they integrate the impulse over from ##t_i## to ##t_f##? Why not from ##j_i## to ##j_f##? It seems strange integrating impulse with respect to time.

Many thanks!
 
Physics news on Phys.org
ChiralSuperfields said:
Homework Statement: Please see below
Relevant Equations: Please see below

For this,
View attachment 326569
Can someone please tell me why they integrate the impulse over from ##t_i## to ##t_f##? Why not from ##j_i## to ##j_f##? It seems strange integrating impulse with respect to time.

Many thanks!
If you are using
##\displaystyle \int d \textbf{J}##
and you have the ##\textbf{J}##'s at the endpoints, the use the ##\textbf{J}##'s.

If you don't have the ##\textbf{J}##'s then you need to use
##\displaystyle \int \textbf{F}(t) \, dt##

-Dan
 
  • Like
Likes   Reactions: member 731016
ChiralSuperfields said:
Can someone please tell me why they integrate the impulse over from ##t_i## to ##t_f##? Why not from ##j_i## to ##j_f##? It seems strange integrating impulse with respect to time.
If you think of ##\vec J## as the cumulative impulse given over some period of time then ##\vec J=\vec J(t)## and it is reasonable to write ##\int_{t=t_i}^{t_f}d\vec J(t)##. But omitting the "t=" from the bounds is a bit naughty.
 
  • Like
Likes   Reactions: topsquark and member 731016
haruspex said:
If you think of ##\vec J## as the cumulative impulse given over some period of time then ##\vec J=\vec J(t)## and it is reasonable to write ##\int_{t=t_i}^{t_f}d\vec J(t)##. But omitting the "t=" from the bounds is a bit naughty.
Thank you for your reply @topsquark and @haruspex!

@haruspex, now that you say J is a function of t I think that helps.

Many thanks!
 

Similar threads

Replies
14
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 24 ·
Replies
24
Views
4K
  • · Replies 3 ·
Replies
3
Views
9K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 9 ·
Replies
9
Views
9K
  • · Replies 4 ·
Replies
4
Views
5K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K