I Maximizing S/N in Angular Power Spectrum Signals

AI Thread Summary
The discussion focuses on maximizing the signal-to-noise ratio (S/N) for angular power spectrum signals, specifically examining the impact of binning the power spectrum. Binning can theoretically reduce noise (Nl) by a factor of 1/sqrt(Δl), but concerns arise about whether summing over binned multipoles yields a cumulative S/N that is actually improved. The confusion lies in the summation term (2l + 1), which accounts for averaging over m modes within a multipole, despite Cℓ being constant for each m mode due to statistical isotropy. It is noted that random noise introduces a bias in Nℓ, complicating the benefits of binning. Ultimately, while binning may not directly enhance S/N, it can help mitigate variance across multipoles in actual measurements.
SherLOCKed
Messages
13
Reaction score
1
The signal-to-noise ratio for angular power spectrum signal Cl under theoretical noise Nl, where Cl and Nl are functions of multipole l, is given as

(S/N)^2= \sum (2l+1) (Cl/Nl)^2To increase the S/N we bin the power spectrum signal, if bin width \Delta l, this in principle decreases Nl by a factor of 1/sqrt(\Delta l).

Now, in (S/N)^2 should we replace the sum over multipoles with the sum over bin centers?
 
Space news on Phys.org
Thanks for the response. I checked the paper, it talks about the power spectrum binning. Suppose I bin the power spectrum as described in the paper.
The confusion I had is, if I just sum over the binned multipoles, I will end with the similar cummulative signal-to-noise ratio as before I started binning. So, binning is not necessarily helping to increase the signal-to-noise ratio.
 
@SherLOCKed I guess one thing that confuses me is why there is a summation over 2 + 1 in this case. That would make sense whenever averaging over all the m modes within a given multipole ℓ. But C is the same for every m mode at a given by assumption of statistical isotropy. So summing over m modes doesn't make sense to me. What does the summation do, and why isn't S/N just quantified as C/N at every multipole?

I agree that because we're considering power, not just amplitude, random noise produces an N that enters your spectrum as a bias, not just as variance. You can't get rid of it by binning multipoles. But for any actual measurement, the noise also causes multipole-to-multipole variance in the estimation of C that would average down through binning.
 
Abstract The Event Horizon Telescope (EHT) has significantly advanced our ability to study black holes, achieving unprecedented spatial resolution and revealing horizon-scale structures. Notably, these observations feature a distinctive dark shadow—primarily arising from faint jet emissions—surrounded by a bright photon ring. Anticipated upgrades of the EHT promise substantial improvements in dynamic range, enabling deeper exploration of low-background regions, particularly the inner shadow...
https://en.wikipedia.org/wiki/Recombination_(cosmology) Was a matter density right after the decoupling low enough to consider the vacuum as the actual vacuum, and not the medium through which the light propagates with the speed lower than ##({\epsilon_0\mu_0})^{-1/2}##? I'm asking this in context of the calculation of the observable universe radius, where the time integral of the inverse of the scale factor is multiplied by the constant speed of light ##c##.
Title: Can something exist without a cause? If the universe has a cause, what caused that cause? Post Content: Many theories suggest that everything must have a cause, but if that's true, then what caused the first cause? Does something need a cause to exist, or is it possible for existence to be uncaused? I’m exploring this from both a scientific and philosophical perspective and would love to hear insights from physics, cosmology, and philosophy. Are there any theories that explain this?
Back
Top