(adsbygoogle = window.adsbygoogle || []).push({}); Consider the system [S, L, P], where S contains exactly four points A, B, C, and D, the lines are the sets with exactly two points, and the planes are sets with exactly three points. This "space" is illustrates by the following figure:

Here it should be remembered that A, B, C, and D are the only points that count. Verify that all the incidence postulates hold in this system.

Incidence Postulates:

I0)All lines and planes are sets of points.

I1) Given any two different points, there is exactly one line containing them.

I2) Given any three different noncollinear points, there is exactly one plane containing them.

I3) If two points lie in a plane, then the line containing them lies in the plane.

I4) If two planes interesect, then their intersection is a line.

I5) Every line contains at least two points. S contains at least three noncollinear points. Every plane contains at least three noncollinear points. And S contains at least four noncoplanar points.

This is what I have thought about doing so far to prove each incidence postulate but I'm not sure if it is right or not:

I0) This holds becuase the hypothesis states the lines are sets with exactly two points.

I1) This holds because the hypothesis states that the planes have exactly three points in them.

I3) This holds because if A lies in a plane and B lies in the same plane, then the line joining them must lie in the same plane.

I4) This holds because there is an exact point, D in S, which is both a line and a plane.

I5) The first statement hold because it is given in the hypothesis. The second statement holds because we are given A, B, C, D and no more than three are lying on the same line. The last one is satisfied because no four of the points are lying on the same plane.

This is my first class having to prove things, so please bare with me.

Thanks for your help!! :)

**Physics Forums - The Fusion of Science and Community**

# Incidence geometry in planes and space

Know someone interested in this topic? Share a link to this question via email,
Google+,
Twitter, or
Facebook

Have something to add?

- Similar discussions for: Incidence geometry in planes and space

Loading...

**Physics Forums - The Fusion of Science and Community**