Incoming spacelike radial geodesic

  • Thread starter Thread starter deadringer
  • Start date Start date
  • Tags Tags
    Geodesic Radial
deadringer
Messages
32
Reaction score
0
We need to show that using the Schwarzschild metric, an incoming radial spacelike geodesic satisfies r>= 1m/(1 + E^2)

I know that E = (1-2m/r) is constant, and I think that ds squared should be negative for a spacelike geodesic. I try substituting E into the metric and setting ds squared <=0 but this does not give the required expressions. I'm also unsure about the meaning of "incoming" - does this mean dr/ds or dr/dt < 0?
 
Physics news on Phys.org
This is not making sense to me on so many levels. If E = (1-2m/r) is a constant then r is a constant. And that's hardly 'incoming'. What are the geodesic equations in the Schwarzschild metric with constant angular coordinates?
 
Sorry I meant to say that E = (1-2m/r) dt/ds is constant (this is one geodesic equation).
 
The other geodesic equation gives us d^2 s/dt^2 which I don't think is useful.
 
Ah, ok. Finally straightened out. And the '1' in the numerator of the radius inequality is supposed to be a '2'. I think your main problem is trying to set ds^2 to be negative in some vague way. Spacelike or timelike is determined by the sign of g*t*t - where g is the metric tensor and t is a tangent vector. Further, in the case of a nonnull geodesic you can set this quantity equal to plus or minus one (defining proper time). Which that is depends on whether the geodesic is timelike or spacelike (and your metric convention).
 
Thanks very much Dick. It's all clear now.
 
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
The value of H equals ## 10^{3}## in natural units, According to : https://en.wikipedia.org/wiki/Natural_units, ## t \sim 10^{-21} sec = 10^{21} Hz ##, and since ## \text{GeV} \sim 10^{24} \text{Hz } ##, ## GeV \sim 10^{24} \times 10^{-21} = 10^3 ## in natural units. So is this conversion correct? Also in the above formula, can I convert H to that natural units , since it’s a constant, while keeping k in Hz ?
Back
Top