(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

If [tex]{\vec{V}(t)[/tex] is a vector function of [tex] t [/tex], find the indefinite integral:

[tex] \int (\vec{V}\times \frac{d^2\vec{V}}{dt^2}) \,dt [/tex]

2. Relevant equations

3. The attempt at a solution

I have solved it by decomposing and integrating each terms of vector [tex]\vec{V}\times \frac{d^2t}{dt^2}[/tex], so I have:

[tex]

\vec{V}\times \frac{d^2\vec{V}}{dt^2}= \hat i (V_y * \frac{d^2V_z}{dt^2} - V_z * \frac{d^2V_y}{dt^2}) - \hat j (V_x * \frac{d^2V_z}{dt^2} - V_z * \frac{d^2V_x}{dt^2}) + \hat k (V_x * \frac{d^2V_y}{dt^2} - V_y * \frac{d^2V_x}{dt^2})

[/tex]

and the integral will be:

[tex]

\int (\vec{V}\times \frac{d^2\vec{V}}{dt^2}) \,dt = \hat i (\int (V_y * \frac{d^2V_z}{dt^2})\,dt - \int (V_z * \frac{d^2V_y}{dt^2})\,dt) - \hat j (\int (V_x * \frac{d^2V_z}{dt^2})\,dt - \int (V_z * \frac{d^2V_x}{dt^2}))\,dt + \hat k (\int (V_x * \frac{d^2V_y}{dt^2})\,dt - \int (V_y * \frac{d^2V_x}{dt^2}),dt)

[/tex]

where [tex]\hat i[/tex],[tex]\hat j[/tex] and [tex]\hat k[/tex] are the three unit vectors with respect to frame of reference [tex](x,y,z)[/tex]

My questions is: that's the right way or there exist some other way to resolve it in a more faster manner?

Thanks to all who will answer me ;)

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Indefinite integral of vector function

**Physics Forums | Science Articles, Homework Help, Discussion**