Independant RV's and the Borel-Cantelli Lemmas

  • Thread starter Thread starter Firepanda
  • Start date Start date
Firepanda
Messages
425
Reaction score
0
wvcuvp.png


The first part I can do no problem!

The second part... well I've really no idea what to do with that S term, I assume it has something to do with the strong law of large numbers? (w is an element in the set of outcomes)

Borel-Cantelli Lemmas

Law of Large Numbers

Does anyone know where to start?

Thanks

edit:

I have an exmple of strong convergence showing that

if P(w : lim Xn(w) = X(w) )

then this is identically equal to

P(Xn -> X) = 1 , almost surely

So I guess I just have to show that P(Xn -> X) = 1,

So show: P(Sn(w)/n -> -1) = 1?

Probably going the wrong way around it.. not sure how Borel Cantelli links to it.
 
Last edited:
Physics news on Phys.org
Firepanda said:
wvcuvp.png


The first part I can do no problem!

The second part... well I've really no idea what to do with that S term, I assume it has something to do with the strong law of large numbers? (w is an element in the set of outcomes)

Borel-Cantelli Lemmas

Law of Large Numbers

Does anyone know where to start?

Thanks

edit:

I have an exmple of strong convergence showing that

if P(w : lim Xn(w) = X(w) )

then this is identically equal to

P(Xn -> X) = 1 , almost surely

So I guess I just have to show that P(Xn -> X) = 1,

So show: P(Sn(w)/n -> -1) = 1?

Probably going the wrong way around it.. not sure how Borel Cantelli links to it.

It is probably simpler to re-write the problem a bit: let X_n = -1 + Y_n, where \Pr\{Y_n = 0 \} = 1 - \frac{1}{n^2}, \mbox{ and } \Pr \{Y_n = n^2 \} = \frac{1}{n^2}. Essentially, you want to show that \sum_{k=1}^n Y_k / n \rightarrow 0 w.p. 1. If A = \{ Y_n > 0 \mbox{ infinitely often } \}, can you show that Pr{A} = 0?

RGV
 
Hi RGV, you always answer my questions it seems! :)

So I need to show given the event En = Yn>0

that the sum from n=1 to inf of P(En) is finite (Borel Cantelli)

So this is the sum of n=1 to inf of 1/n2?

Which is pi^2/6, and so the probability is 0!

Correct?
 
Also any idea on the second part of this question?

v5ltep.png


It looks like the same structure..

Thanks!
 
bump..!
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top