Brian-san
- 42
- 0
Homework Statement
Two infinite grounded parallel conducting planes are separated by a distance d. A point charge q is placed between the planes. Determine the induced surface charge densities as well as the total charges on the two planes.
Homework Equations
Potential of a point charge:
\Phi=\frac{q}{r}
Electric Field/Potential relation:
\vec{E}=-\nabla\Phi
Electric Field discontinuity:
4\pi\sigma
The Attempt at a Solution
I chose the x-axis to be perpendicular to the plates, with the plates at ±d/2, and the point charge q at some location a, 0<a<d/2 (it doesn't matter where, but I wanted it on the positive side of the x-axis).
Using the method of images, since both plates are grounded (zero potential), we need a point charge -q at x=d-a to balance the right plate. But then to balance the left plate we need a charge q at x=-2d+a and a charge -q at x=-2d-a. This process needs to be repeated an infinite number of times for the image charges to recreate the boundary conditions. They form a pattern where charges of q are located at x=±2nd+a and charges of -q at x=±(2n+1)d-a, where n is a non-negative integer (0, 1, 2, ...).
So for a point (x,y z) between the two plates, I get the following expression for the potential:
\Phi(x,y,z)=q\sum_{n=-\infty}^{\infty}\left(\frac{1}{\sqrt{(x-2nd-a)^2+y^2+z^2}}-\frac{1}{\sqrt{(x-(2n+1)d+a)^2+y^2+z^2}}\right)
Since the discontinuity is related to the normal component of the electric field, which will be in the x direction, I'm only worried about the x component of the electric field. So using the gradient relation,
\vec{E_x}(x,y,z)=q\sum_{n=-\infty}^{\infty}\left(\frac{x-2nd-a}{((x-2nd-a)^2+y^2+z^2)^{\frac{3}{2}}}-\frac{x-(2n+1)d-a}{((x-(2n+1)d+a)^2+y^2+z^2)^{\frac{3}{2}}}\right)
To use the discontinuity fact, we need to know the value of the electric field as we come from the left and right of the plates. So for the plate at d/2, to the right E=0, and from the left, I chose point (d/2, 0, 0) for ease.
\vec{E_x}(x,y,z)=4q\sum_{n=-\infty}^{\infty}\left(\frac{1}{(d(1-4n)-2a)^2}-\frac{1}{(d(1+4n)-2a)^2}\right)
That expression has a lot of algebraic simplification done to it. On instinct, I believe the series will converge, but it is not of any form I am familiar with, perhaps more simplification is needed. I suppose a better question might be, should I approach the problem in this way with the method of images, or is there some other approach/trick that would work better?