Suppose I had cylindrically-symmetric rotating magnet surrounded by a plasma.(adsbygoogle = window.adsbygoogle || []).push({});

I rotate it on its axis at a constant angular velocity, and so the electric fieldEproduced is non-solenoidal and can be described as the negative gradient of some potential V(x,y,z).

The electric field is induced perpendicularly to the vector potential, as the vector potential points in the azimuthal (φ) direction and the electric field has no azimuthal (φ) components.

So some current is expected to develop at right angles to the vector potential.

However, when current develops at right angles to the vector potential of some source, that current does not induce net change of flux linkage directed on the magnet. Or does it?

Since the magnet is not one monolithic object, the subobjects (magnetic domains) which make it up have different velocities. In the frame of reference of one of these subobjects (magnetic domains), the external magnetic fieldBfrom the plasma is transformed to a magnetic fieldB'observed in its instantaneous co-moving inertial frame. This suggests that in the instantaneous co-moving inertial frame of a magnetic domain, the electric fieldE'may have solenoidal components which are absent in the lab frame.

Since the curl of the magnetizationMgives us a magnetization current, analogous to an electric current, the emf induced on these "magnetization currents" through the closed-line integral of the electric field, corresponds to energy exchange through electromagnetic induction. Thus, while the lab frame could suggest that no EMF is occurring on these magnetization currents (i.e.curl E= 0), in the local "material" frame of each magnetic domain, there is acurl E'due to an apparent changing magnetic field.

Also, as each magnetic domain revolves around the collective axis, the transformation of the apparentE'andB'fields change with time. The time derivative ofB'would differ in the material frame from the labBfield by the time derivative of -v x E/ c^2 (in the non-relativistic approximation). I would assume that the changes of velocityvof a magnetic domain with time, which leads to apparent changes in the externally applied magnetic fieldB'(v), does not generate a physical EMF on its magnetization currents, but that the apparent change of EMF due to changes in external fieldB'(E(t,r(t))) observed in the instantaneous co-moving inertial frame (which is offset from the lab frame by instantaneous velocityv), ultimately due to time and spatial variations ofEin the lab frame, would result in a physical EMF. If this is true, wouldn't that mean the time integral of the physical EMF on the magnetization currents could accumulate (volt-seconds in SI units) even thoughBis constant (i.e. curlE= 0)? To put this in another way, is it right to think that a changing magnetic fieldB'would be observed for a looped magnetization current traveling at velocityvperpendicular to an electric displacement current ∂E/∂t, which would be subject to an EMF (closed loop integral ofE'(t,r(t))) that is not apparent in the lab frame?

Would then the work done on the plasma through the potential V(x,y,z) produced by a cylindrically-symmetric magnet with constant angular velocity be possible by extracting energy from the magnetization currents of a magnetic domain through the volume integral of the time integral ofcurl MdotE', disregarding those changes ofE'which are specifically due to time variation of the velocityvof a magnetic domain?

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# I Inducing currents without change of flux linkage?

Tags:

Have something to add?

Draft saved
Draft deleted

**Physics Forums | Science Articles, Homework Help, Discussion**