Inequalities and Absolue Values: Problem Solving Approach

Saladsamurai
Messages
3,009
Reaction score
7
Hello all! :smile: In my quest to re-teach myself the basics of mathematics in a more rigorous fashion, I have found out that inequalities and absolute values are a weak point if mine. So I am working to address that. I am getting much better at it (with help from PF), but I have recently encountered seemingly simple problem that turned out to be a little trickier than I thought. Though I can arrive at the correct answer, I am not sure that my procedure is sound. Hopefully you can offer some insight. Take the following problem from chapter 1 of Spivak's Calculus (Problem 11 (iv)):

Find all ##x## for which ##|x-1|+|x-2| > 1 \qquad(1)##.

My approach to these has been to use the fact that the definition of absolute value is

<br /> \begin{align}<br /> |x| =<br /> \begin{cases}<br /> x, &amp; \text{if }x\ge0 \\<br /> -x, &amp; \text{if }x\le0<br /> \end{cases}<br /> \end{align}<br />

so then for each quantity enclosed by absolute value signs, there are 2 cases that needed to be evaluated. Applying this to (1) we have


Case 1: ##(x-1)>0 \wedge (x-2)>0## then

##(x-1) + (x-2) > 1 \implies x > 2.##


Case 2: ##(x-1)<0 \wedge (x-2)<0## then

## (1-x) + (2-x) > 1 \implies x<2.##


Case 3: ##(x-1)>0 \wedge (x-2)<0## then

## (x-1)+(1-x) > 1 \implies 0 >1. ##


Case 4: ##(x-1)<0 \wedge (x-2)>0## then

## (1-x) + (x+2) > 1 \implies 3 > 1. ##


Let's just look at Case 1 for a moment.

Assuming that ##(x-1)>0 \wedge (x-2)>0## is the same as assuming ## x > 1 \wedge x>2.## This is clearly only true for ##x>2##, so there is really no need to specify that ##x>1.## But when it comes time to solve the actual problem, I need to use the expression ##(x-1)## under the assumption that it is a positive quantity, which is the same as specifying that ##x>1##. The answer I got is ##x>2## and is valid, but I feel like I might miss something in future problems if I do not pay attention to this detail.

So my question is this: Do I simply solve the inequality as I have done and then restrict the solution to ##x>2## if I were to get something less than 2?

Does my question make sense?
 
Mathematics news on Phys.org
It is simpler just to look at the domains for x.
There are 3 cases, x > 2, 2 > x > 1, 1 > x. These correspond to your first 3 cases (not in the same order).
Your case 4 is non-existent, x > 2 and x < 1 is impossible.
 
Last edited:
mathman said:
It is simpler just to look at the domains for x.
There are 3 cases, x > 2, 2 > x > 1, 1 > x. These correspond to your first 3 cases (not in the same order).
Your case 4 is non-existent, x > 2 and x < 1 is impossible.

Hi mathman :smile: Yes, we have not gotten to the other 3 cases yet. I am focusing on the simple one: Case 1. I am afraid people might not be understanding question, but I am not sure how else to word it.
 
The case x&gt;1~\wedge~x&gt;2 is indeed equivalent to x>2.

If you solve the equation under the premisse that x>2, then every solution must satisfy that. If you find that the equation is true for all x>-2, then only the x>2 will count.

For example, if you solve |x-1|&gt;-5 (I know you can easily see that all x will be a solution, but I'm just setting an example).

You can split up

1) x\geq 1, in that case |x-1|=x-1. So the equation is x-1>-5. This is true for x>-4. However, you originally set x&gt;1, so in this case the only solutions are all x&gt;1 (and not all x>-4).

2) x<1, in that case |x-1|=1-x. The equation becomes 1-x>5, or x<6. In this case the solutions are all x<1 (and not x<6).

Adding (1) and (2) yields that all real numbers are a solution.
 
Salad convinved me that a separate thread does have some merit. This thread is not the same as the HW question, but is rather more general. So I'll allow this thread to stay open.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top