1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Inertial frame of Reference?

  1. Oct 14, 2009 #1
    I am confuse of what is inertial frame of reference.
    Can someone explain that to me?
    I need a clear explanation starting from the beginning to the end, and if possible, give me some set of example.
  2. jcsd
  3. Oct 14, 2009 #2
  4. Oct 14, 2009 #3
    It is a reference frame that stays always still or moves at a constant velocity V.
  5. Oct 14, 2009 #4
    there are some threads talking about non inertial reference frames, you can search them.

    Otherwise, I think that an inertial frame is a frame where second newton law holds true, if you make measures and the results given by F=ma are false, that means that you are on a non inertial frame (like the earth, because it is rotating).

    The key of the question (I think) is that F=ma says that to every acceleration corresponds a force, but if you are in an accelerated frame (non inercial) you "see" accelerations that does not correspond to any real force like gravity, electricity and so on, they only correspond to your state or motion.

    So If you want to use newton laws you must introduce the "ficticious" forces into the F=ma , and then this equation will be lawful in the non inertial frame, verily they are not real forces, but they describe the new accelerations due to the movement of the non inercial frame.

    In the earth you have to introduce this ficticious forces to the newton equation:

    -translation force (you feel it when a train starts a travel , is not a true force, but mathly is useful to explain the acceleration that you feel, if you are into the train(so on a non inertial frame)).

    -centrifugal force (you feel it when you are sitted into your car and you are driving into a curve, you feel acceleration, another time is not a real force, but in your frame it makes the same as it was a real force, so you have to insert this term into the equation).

    -coriolis, and azimuthal forces are more tricky to explain.
  6. Oct 14, 2009 #5


    User Avatar
    Science Advisor

    But what are "real forces"? If I feel a force on me, how do I decide, in my frame of reference, whether it is a "real" force or not? What experiments can I run, in a closed laboratory, say, to determine whether my rest frame is inertial or not?

  7. Oct 14, 2009 #6
    You can't , that is the equivalence principle from Einstein, acceleration due to gravity is not different of any other acceleration of the same magnitude, but in the Eart sciences you use that terminology.
  8. Oct 14, 2009 #7


    User Avatar
    Science Advisor

    Those which obey Newtons 3rd law?
    If you "feel" it is a "real" force because fictional forces accelerate everything equally, so you don't feel them?
    Shine a laser, and see if the beam bends?
  9. Oct 14, 2009 #8
    About the second point, if we have these two situations:

    -you are inside an elevator in a gravitational field

    -you are inside the elevator, and it is accelerated by a rocket at 9,8 m/s2 (logically without gravity)

    If you can't make measures from the outside of the elevator ¿can you feel any difference?
  10. Oct 14, 2009 #9
    But you can determine, through experimentation, if a force is due to gravity or acceleration. Example: Two plum lines separated by a distance will not be parallel in the case of gravity, but they will be in the case of linear acceleration.


    I agree with A.T. Real forces are those that obey Newtons laws. However, it really depends on how precise you need to be. Your experiments may show that all forces and motions obey Newtons laws. But upon more precise measurements you will discover that they do not. There are no real perfect inertial frames. Or, maybe there are. We just don't know where they're at.
  11. Oct 14, 2009 #10


    User Avatar
    Science Advisor

    No, that's why both elevators are non-inertial in relativity.
  12. Oct 14, 2009 #11
    -In the "force due to acceleration" picture , if you would put a mass sufficiently far away , the lines of force would be almost parallel, so ¿could you distinguish it from a force due to acceleartion?.

    Perhaps the solution is what you say about what level of precision we want, but I suppose that practically it would be very difficult to measure that.


    But you said that you can "feel" real forces, because fictious forces accelerate everything equally , and I understand from this, that you can't "feel" ficticious forces , but that is not clear because in a curve into a car you "feel" the centrifugal force.


    I don't know where will finish this debate, but it is interesting and I appreciate your replies.
  13. Oct 15, 2009 #12
    You may find this 4-part video helpful. It assumes no previous knowlege of inertial frames.

    Yes, it depends on what the precision requirements are. There are also other ways to detect whether a force is due to gravity or acceleration. The force of gravity decreases according to the square of the distance. If you're standing on the 1st floor of a high rise building, then you will have more force than if you were standing on the top floor. However, if the building were being accelerated by a rocket then the force would be equal on all floors. And there are tidal forces associated with gravity, although those would be even more difficult to detect.
    Last edited by a moderator: Sep 25, 2014
  14. Oct 15, 2009 #13


    User Avatar
    Science Advisor

    No you don't feel the centrifugal force. It accelerates every part of your body uniformly so it creates no stresses that you could sense. What you eventually feel is the centripetal force applied to your face by the side window. That is a real force.
  15. Oct 16, 2009 #14
    Thanks for the videos.

    In the case of an accelerometer, you have x as function of the acceleration of the noninertial frame ¿how could you explain that ?
    Last edited by a moderator: Sep 25, 2014
  16. Oct 16, 2009 #15

    D H

    User Avatar
    Staff Emeritus
    Science Advisor

    You are not feeling a centrifugal force in this situation. The centrifugal force is directed outward, not inward. What you are feeling is a centripetal force.

    The centrifugal force at some point is [itex]-m\boldsymbol{\Omega}\times(\boldsymbol {\Omega} \times \mathbf r)[/itex]. This is not a uniform force.

    A better explanation is that the centrifugal force is an artifact of the observer. Create another rotating frame, same frame rotation rate but different origin. The centrifugal force will differ between the two non-inertial frames. Create yet another rotating frame, this time with a different frame angular velocity. Now the subject body will be subject to yet a different centrifugal force and a coriolis force as well.
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook