Infinite and finite countable sets

hatsu27
Messages
9
Reaction score
0
Ok I understand the concept of infinite countability and that say the set of all rational #s is infinitely countable, but if I needed to represent the set how do I do that? S={xε rat. # : x= k , k ε a rational #}? that doesn't seem right. Also say I wanted to show a set of finite countable numbers, I'm sure I can just write T={1,2,3,4} but shouldn't i do something more proper and state that T = {n ε rat. # : 1≤n≤4}? I just need help with how to properly represent sets- Thanks!
 
Physics news on Phys.org
hatsu27 said:
Ok I understand the concept of infinite countability and that say the set of all rational #s is infinitely countable
You are mixing up the terms. The positive integers and the rationals are countably infinite, and the reals are uncountably infinite. No set is described as being infinitely countable.
hatsu27 said:
, but if I needed to represent the set how do I do that? S={xε rat. # : x= k , k ε a rational #}? that doesn't seem right.
S = {x : x is rational}. Sometimes Q is used to represent rational numbers, so you could also say S = {x : x ##\in## Q}.
hatsu27 said:
Also say I wanted to show a set of finite countable numbers, I'm sure I can just write T={1,2,3,4}
This is an example of a finite set. The way you wrote it, above, is fine.
hatsu27 said:
but shouldn't i do something more proper and state that T = {n ε rat. # : 1≤n≤4}?
This would be all of the rational numbers between 1 and 4. This set is not the same as {1, 2, 3, 4}.
hatsu27 said:
I just need help with how to properly represent sets- Thanks!
 
##\textbf{Exercise 10}:## I came across the following solution online: Questions: 1. When the author states in "that ring (not sure if he is referring to ##R## or ##R/\mathfrak{p}##, but I am guessing the later) ##x_n x_{n+1}=0## for all odd $n$ and ##x_{n+1}## is invertible, so that ##x_n=0##" 2. How does ##x_nx_{n+1}=0## implies that ##x_{n+1}## is invertible and ##x_n=0##. I mean if the quotient ring ##R/\mathfrak{p}## is an integral domain, and ##x_{n+1}## is invertible then...
The following are taken from the two sources, 1) from this online page and the book An Introduction to Module Theory by: Ibrahim Assem, Flavio U. Coelho. In the Abelian Categories chapter in the module theory text on page 157, right after presenting IV.2.21 Definition, the authors states "Image and coimage may or may not exist, but if they do, then they are unique up to isomorphism (because so are kernels and cokernels). Also in the reference url page above, the authors present two...
When decomposing a representation ##\rho## of a finite group ##G## into irreducible representations, we can find the number of times the representation contains a particular irrep ##\rho_0## through the character inner product $$ \langle \chi, \chi_0\rangle = \frac{1}{|G|} \sum_{g\in G} \chi(g) \chi_0(g)^*$$ where ##\chi## and ##\chi_0## are the characters of ##\rho## and ##\rho_0##, respectively. Since all group elements in the same conjugacy class have the same characters, this may be...
Back
Top