MHB Infinite Natural Numbers: First-Order Logic Formula Explained

pooj4
Messages
4
Reaction score
0
There are an infinite number of natural numbers. Why is that? Well this follows from the following facts:

(i) There is at least one natural number.

(ii) For each natural number there is a distinct number which is its successor, i.e., for each number $x$ there is a distinct number $y$ such that $y$ stands in the
successor relation to $x$.

(iii) No two natural numbers have the same successor.

(iv) There is a natural number, namely 0, that is not the successor of any number.Bearing these facts in mind, what's a formula in first-order logic that that is satisfiable by a valuation only if the domain of the valuation is infinite. Contain some non-logical vocabulary in presentation of course.
 
Physics news on Phys.org
$$(\forall x\forall y\,(S(x)=S(y)\to x=y))\land \forall x\,S(x)\ne0$$
 
Evgeny.Makarov said:
$$(\forall x\forall y\,(S(x)=S(y)\to x=y))\land \forall x\,S(x)\ne0$$

thanks that helps
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top