Fabio Sachs said:
Thanks for such a clear and fast response!
I know I have poorly frased my first question as you have very apropriately pointed out. Maybe I should have put it as Inflation having occurred at such a pace that the distance between any two things grew by (way) more than 300 000 km every second. What I hadn´t realized was that there were no galaxies formed by then!
The thing is, the recession velocity depends upon distance. The recession velocity of most of the galaxies in the visible universe is greater than c and always has been. We can see these objects because the rate of expansion has been slowing down.
Fabio Sachs said:
Is the inflationary period visible for us or is it within the invisible early instants?
Certainly not with visible light. Prior to the emission of the CMB, which occurred a few hundred thousand years after inflation ended, our universe was opaque. The emission of the CMB is the earliest we can see with visible light.
Now, it
might be possible to see the imprint of gravitational waves from the inflationary period imprinted on the CMB, but so far those haven't been detected (BICEP2 thought they detected them, but it turned out to be foreground contamination).
Fabio Sachs said:
As for the second question, your answer seemed to me as meaning that : There is conservation except when there isn't!
Conservation laws are a result of symmetries. This is demonstrated by Noether's theorem*. You get conservation of momentum for any system that has certain properties that don't change from place to place. You get conservation of angular momentum for any system that, when rotated, looks the same in a certain mathematical sense. And you get conservation of energy when a system doesn't change over time in a particular mathematical sense.
General Relativity throws a great big wrench into all of this because it throws out the entire notion of absolute space and time. Without absolute space and time, what you mean by the words, "doesn't change from place to place" or "over time" becomes ambiguous. It is easy, for example, to write down equations that look like an expanding universe, but in actuality just represent flat space-time where there is nothing measurable that can be called "expansion".
Instead, General Relativity follows other symmetries that enforce the conservation of the stress-energy tensor. This higher-order object contains energy density, pressure, twisting forces, and momentum. The whole thing is conserved together in a very particular way, and in certain physical scenarios this forces energy to not be conserved. It also doesn't make sense to say that the energy goes into pressure or whatnot: all of the terms in the stress energy tensor can go down together just fine (the way it's conserved is specific, but a little weird and counter-intuitive).
* Fun fact: Emmy Noether is one of the few women who have theorems with their names on them. Sexism has been endemic in the sciences for a long, long time...