1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Inner product spaces of matrices (linear algebra)

  1. Apr 18, 2009 #1

    I understand the concepts of the inner product in Rn as well as the vector space of C[a,b] as the integral operator, however i don't understand how to obtain or prove the inner product space of two 2x2 matrices?
    Example: consider two matrices u,v which are row 1 [a b] row 2 [c d]

    and row 1[e f],row 2[g h]

    where u is the 1st matrix and v is the second
    for example if the inner product of <u,v>= ae+2bf+3cg+4hd
    How do i satisfy the 4 axioms that prove the subspace spanned by these two matrices is infact an inner product?

    P.S. i use lay's linear algebra book and there is NOTHING on matrices of inner products, only integral operators, R^n but not matrices and we werent taught in class how...?
  2. jcsd
  3. Apr 18, 2009 #2


    User Avatar
    Science Advisor
    Homework Helper

    Since you are explicitly given the formula for the inner product, you can just work out the axioms.
    You know that 2 x 2 matrices can be added, so calculate <u, v + w> where u and v are as given an w is [[m n] [p q]] and show that it is equal to <u, v> + <u, w>, using what you know about matrices.
    Calculate <u, u> and show that it is non-negative, and zero iff a = b = c = d = 0.
    And so on.

    In this type of calculations, I think it is best to put aside your intuition about parallel vectors and Euclidean spaces, and simply view the inner product as just a formal manipulation of which you need to check that it has certain properties.
  4. Apr 18, 2009 #3

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    I don't see what that would accomplish: an inner product isn't a subspace.

    Since the 2x2 matrices are just a 4-dimensional vector space over R, then the book has taught you about inner products on them.
  5. Apr 18, 2009 #4

    matt grime

    User Avatar
    Science Advisor
    Homework Helper

    Please do not send pms: post in the forum instead.

    Your message:

    The first two axioms of what? Axioms are not canonically ordered; I will not know exactly what is in your notes/book.

    Forget they're matrices. It has nothing to do with u and v being matrices other than that they live in a vector space.

    You just have to verify that something given to you satisfies the definition of an inner product. There is nothing deep about the formula you were given.

    Forget matrices. Just think of u and v as vectors in R^4 by writing the 2 columns as a single column vector:


    with the t for transpose, as it's easier to type row matrices. Show that


    is an inner product. It clearly is as it is just u^tAv where A is diag(1,2,3,4).
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook