MHB Integer S most close to A and less than A

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
The discussion revolves around calculating the value of A, defined as a series of square root expressions involving fractions of integers. The corrected formula for A includes terms that sum from 1 to 2011, incorporating both the integer and fractional components. Participants are tasked with finding an integer S that is closest to A but still less than A. The conversation confirms that the provided answer for A is correct, indicating successful calculations. The focus remains on accurately determining the integer S in relation to A.
Albert1
Messages
1,221
Reaction score
0
$A=\sqrt{1^2+\dfrac{1}{1^2+2^2}}+\sqrt{1^2+\dfrac{1}{2^2+3^2}}+\sqrt{1^2+\dfrac{1}{3^2+4^2}}+---+\sqrt{1^2+\dfrac{1}{2011^2+2012^2}}$
please find an integer S most close to A and less than A
 
Mathematics news on Phys.org
Albert said:
$A=\sqrt{1^2+\dfrac{1}{1^2+2^2}}+\sqrt{1^2+\dfrac{1}{2^2+3^2}}+\sqrt{1^2+\dfrac{1}{3^2+4^2}}+---+\sqrt{1^2+\dfrac{1}{2011^2+2012^2}}$
please find an integer S most close to A and less than A
sorry :a typo
$A=\sqrt{1^2+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+-------+\sqrt{1^2+\dfrac{1}{2011^2}+\dfrac{1}{2012^2}}$
 
$$A=\sum_{n=1}^{2011}\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sum_{n=1}^{2011}\sqrt{\frac{[n(n+1)]^2+(n+1)^2+n^2}{[n(n+1)]^2}}$$

$$=\sum_{n=1}^{2011}\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\sqrt{\frac{(n^2+n+1)^2}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\frac{n^2+n+1}{n(n+1)}$$

$$=\sum_{n=1}^{2011}\left(1+\frac{1}{n(n+1)}\right)=2011+\sum_{n=1}^{2011}\left(\frac1n-\frac{1}{n+1}\right)\Rightarrow S=2011$$
 
greg1313 said:
$$A=\sum_{n=1}^{2011}\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sum_{n=1}^{2011}\sqrt{\frac{[n(n+1)]^2+(n+1)^2+n^2}{[n(n+1)]^2}}$$

$$=\sum_{n=1}^{2011}\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\sqrt{\frac{(n^2+n+1)^2}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\frac{n^2+n+1}{n(n+1)}$$

$$=\sum_{n=1}^{2011}\left(1+\frac{1}{n(n+1)}\right)=2011+\sum_{n=1}^{2011}\left(\frac1n-\frac{1}{n+1}\right)\Rightarrow S=2011$$
great ! your answer is correct
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K