MHB Integer S most close to A and less than A

  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
The discussion revolves around calculating the value of A, defined as a series of square root expressions involving fractions of integers. The corrected formula for A includes terms that sum from 1 to 2011, incorporating both the integer and fractional components. Participants are tasked with finding an integer S that is closest to A but still less than A. The conversation confirms that the provided answer for A is correct, indicating successful calculations. The focus remains on accurately determining the integer S in relation to A.
Albert1
Messages
1,221
Reaction score
0
$A=\sqrt{1^2+\dfrac{1}{1^2+2^2}}+\sqrt{1^2+\dfrac{1}{2^2+3^2}}+\sqrt{1^2+\dfrac{1}{3^2+4^2}}+---+\sqrt{1^2+\dfrac{1}{2011^2+2012^2}}$
please find an integer S most close to A and less than A
 
Mathematics news on Phys.org
Albert said:
$A=\sqrt{1^2+\dfrac{1}{1^2+2^2}}+\sqrt{1^2+\dfrac{1}{2^2+3^2}}+\sqrt{1^2+\dfrac{1}{3^2+4^2}}+---+\sqrt{1^2+\dfrac{1}{2011^2+2012^2}}$
please find an integer S most close to A and less than A
sorry :a typo
$A=\sqrt{1^2+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+-------+\sqrt{1^2+\dfrac{1}{2011^2}+\dfrac{1}{2012^2}}$
 
$$A=\sum_{n=1}^{2011}\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sum_{n=1}^{2011}\sqrt{\frac{[n(n+1)]^2+(n+1)^2+n^2}{[n(n+1)]^2}}$$

$$=\sum_{n=1}^{2011}\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\sqrt{\frac{(n^2+n+1)^2}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\frac{n^2+n+1}{n(n+1)}$$

$$=\sum_{n=1}^{2011}\left(1+\frac{1}{n(n+1)}\right)=2011+\sum_{n=1}^{2011}\left(\frac1n-\frac{1}{n+1}\right)\Rightarrow S=2011$$
 
greg1313 said:
$$A=\sum_{n=1}^{2011}\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sum_{n=1}^{2011}\sqrt{\frac{[n(n+1)]^2+(n+1)^2+n^2}{[n(n+1)]^2}}$$

$$=\sum_{n=1}^{2011}\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\sqrt{\frac{(n^2+n+1)^2}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\frac{n^2+n+1}{n(n+1)}$$

$$=\sum_{n=1}^{2011}\left(1+\frac{1}{n(n+1)}\right)=2011+\sum_{n=1}^{2011}\left(\frac1n-\frac{1}{n+1}\right)\Rightarrow S=2011$$
great ! your answer is correct
 
Thread 'Erroneously  finding discrepancy in transpose rule'
Obviously, there is something elementary I am missing here. To form the transpose of a matrix, one exchanges rows and columns, so the transpose of a scalar, considered as (or isomorphic to) a one-entry matrix, should stay the same, including if the scalar is a complex number. On the other hand, in the isomorphism between the complex plane and the real plane, a complex number a+bi corresponds to a matrix in the real plane; taking the transpose we get which then corresponds to a-bi...

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K