Integer S most close to A and less than A

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary
SUMMARY

The discussion focuses on calculating the value of A, defined as the sum of a series of square root expressions involving fractions of integers. The corrected formula for A is given as $A=\sqrt{1^2+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+\ldots+\sqrt{1^2+\dfrac{1}{2011^2}+\dfrac{1}{2012^2}}$. The goal is to find an integer S that is closest to A but less than A. The final answer provided in the discussion confirms the correctness of the calculations performed.

PREREQUISITES
  • Understanding of square root functions and their properties
  • Familiarity with series summation techniques
  • Basic knowledge of calculus, particularly limits and convergence
  • Proficiency in mathematical notation and expressions
NEXT STEPS
  • Explore numerical methods for approximating series sums
  • Learn about convergence tests for infinite series
  • Investigate the properties of square root functions in mathematical analysis
  • Study integer approximation techniques in numerical analysis
USEFUL FOR

Mathematicians, students studying calculus or numerical methods, and anyone interested in series summation and integer approximation techniques.

Albert1
Messages
1,221
Reaction score
0
$A=\sqrt{1^2+\dfrac{1}{1^2+2^2}}+\sqrt{1^2+\dfrac{1}{2^2+3^2}}+\sqrt{1^2+\dfrac{1}{3^2+4^2}}+---+\sqrt{1^2+\dfrac{1}{2011^2+2012^2}}$
please find an integer S most close to A and less than A
 
Mathematics news on Phys.org
Albert said:
$A=\sqrt{1^2+\dfrac{1}{1^2+2^2}}+\sqrt{1^2+\dfrac{1}{2^2+3^2}}+\sqrt{1^2+\dfrac{1}{3^2+4^2}}+---+\sqrt{1^2+\dfrac{1}{2011^2+2012^2}}$
please find an integer S most close to A and less than A
sorry :a typo
$A=\sqrt{1^2+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+-------+\sqrt{1^2+\dfrac{1}{2011^2}+\dfrac{1}{2012^2}}$
 
$$A=\sum_{n=1}^{2011}\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sum_{n=1}^{2011}\sqrt{\frac{[n(n+1)]^2+(n+1)^2+n^2}{[n(n+1)]^2}}$$

$$=\sum_{n=1}^{2011}\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\sqrt{\frac{(n^2+n+1)^2}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\frac{n^2+n+1}{n(n+1)}$$

$$=\sum_{n=1}^{2011}\left(1+\frac{1}{n(n+1)}\right)=2011+\sum_{n=1}^{2011}\left(\frac1n-\frac{1}{n+1}\right)\Rightarrow S=2011$$
 
greg1313 said:
$$A=\sum_{n=1}^{2011}\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sum_{n=1}^{2011}\sqrt{\frac{[n(n+1)]^2+(n+1)^2+n^2}{[n(n+1)]^2}}$$

$$=\sum_{n=1}^{2011}\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\sqrt{\frac{(n^2+n+1)^2}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\frac{n^2+n+1}{n(n+1)}$$

$$=\sum_{n=1}^{2011}\left(1+\frac{1}{n(n+1)}\right)=2011+\sum_{n=1}^{2011}\left(\frac1n-\frac{1}{n+1}\right)\Rightarrow S=2011$$
great ! your answer is correct
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K