Integer S most close to A and less than A

  • Context: MHB 
  • Thread starter Thread starter Albert1
  • Start date Start date
  • Tags Tags
    Integer
Click For Summary

Discussion Overview

The discussion revolves around finding an integer S that is closest to a defined value A, while also being less than A. The value A is expressed as a summation involving square roots and fractions, and the problem is presented in a mathematical context.

Discussion Character

  • Mathematical reasoning

Main Points Raised

  • Post 1 introduces the expression for A and requests an integer S that is close to A and less than A.
  • Post 2 clarifies the expression for A due to a typo in the first post, providing a corrected formula for A.
  • Post 3 acknowledges that a previous answer provided is correct, though it does not specify what that answer is.

Areas of Agreement / Disagreement

The discussion does not present any explicit disagreements, but it does not clarify whether there is consensus on the value of S or the correctness of the calculations leading to it.

Contextual Notes

The discussion involves a mathematical expression that may have dependencies on specific interpretations of the summation and the calculations involved, which are not fully resolved in the posts.

Albert1
Messages
1,221
Reaction score
0
$A=\sqrt{1^2+\dfrac{1}{1^2+2^2}}+\sqrt{1^2+\dfrac{1}{2^2+3^2}}+\sqrt{1^2+\dfrac{1}{3^2+4^2}}+---+\sqrt{1^2+\dfrac{1}{2011^2+2012^2}}$
please find an integer S most close to A and less than A
 
Mathematics news on Phys.org
Albert said:
$A=\sqrt{1^2+\dfrac{1}{1^2+2^2}}+\sqrt{1^2+\dfrac{1}{2^2+3^2}}+\sqrt{1^2+\dfrac{1}{3^2+4^2}}+---+\sqrt{1^2+\dfrac{1}{2011^2+2012^2}}$
please find an integer S most close to A and less than A
sorry :a typo
$A=\sqrt{1^2+\dfrac{1}{1^2}+\dfrac{1}{2^2}}+\sqrt{1^2+\dfrac{1}{2^2}+\dfrac{1}{3^2}}+\sqrt{1^2+\dfrac{1}{3^2}+\dfrac{1}{4^2}}+-------+\sqrt{1^2+\dfrac{1}{2011^2}+\dfrac{1}{2012^2}}$
 
$$A=\sum_{n=1}^{2011}\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sum_{n=1}^{2011}\sqrt{\frac{[n(n+1)]^2+(n+1)^2+n^2}{[n(n+1)]^2}}$$

$$=\sum_{n=1}^{2011}\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\sqrt{\frac{(n^2+n+1)^2}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\frac{n^2+n+1}{n(n+1)}$$

$$=\sum_{n=1}^{2011}\left(1+\frac{1}{n(n+1)}\right)=2011+\sum_{n=1}^{2011}\left(\frac1n-\frac{1}{n+1}\right)\Rightarrow S=2011$$
 
greg1313 said:
$$A=\sum_{n=1}^{2011}\sqrt{1+\frac{1}{n^2}+\frac{1}{(n+1)^2}}=\sum_{n=1}^{2011}\sqrt{\frac{[n(n+1)]^2+(n+1)^2+n^2}{[n(n+1)]^2}}$$

$$=\sum_{n=1}^{2011}\sqrt{\frac{n^4+2n^3+3n^2+2n+1}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\sqrt{\frac{(n^2+n+1)^2}{[n(n+1)]^2}}=\sum_{n=1}^{2011}\frac{n^2+n+1}{n(n+1)}$$

$$=\sum_{n=1}^{2011}\left(1+\frac{1}{n(n+1)}\right)=2011+\sum_{n=1}^{2011}\left(\frac1n-\frac{1}{n+1}\right)\Rightarrow S=2011$$
great ! your answer is correct
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K